Characterization of connexin36 gap junctions in the human outer retina O Kántor, Z Benkő, A Énzsöly, C Dávid, A Naumann, R Nitschke, A Szabó, ... Brain Structure and Function 221 (6), 2963-2984, 2016 | 39 | 2016 |
Exact Inference of Causal Relations in Dynamical Systems Z Benkő, Á Zlatniczki, D Fabó, A Sólyom, L Erőss, A Telcs, Z Somogyvári arXiv preprint arXiv:1808.10806, 2018 | 25* | 2018 |
Strategic positioning of Connexin36 Gap junctions across human retinal ganglion cell dendritic arbors O Kántor, G Szarka, Z Benkő, Z Somogyvári, E Pálfi, G Baksa, G Rácz, ... Frontiers in cellular neuroscience, 409, 2018 | 13 | 2018 |
Model-free detection of unique events in time series Z Benkő, T Bábel, Z Somogyvári Scientific reports 12 (1), 1-17, 2022 | 12 | 2022 |
Manifold-adaptive dimension estimation revisited Z Benkő, M Stippinger, R Rehus, A Bencze, D Fabó, B Hajnal, LG Eröss, ... PeerJ Computer Science 8, e790, 2022 | 8 | 2022 |
Causal relationship between local field potential and intrinsic optical signal in epileptiform activity in vitro Z Benkő, K Moldován, K Szádeczky-Kardoss, L Zalányi, S Borbély, I Világi, ... Scientific reports 9 (1), 1-12, 2019 | 7 | 2019 |
How to find a unicorn: a novel model-free, unsupervised anomaly detection method for time series Z Benkő, T Bábel, Z Somogyvári arXiv preprint arXiv:2004.11468, 2020 | 5 | 2020 |
CCDH: Complexity based Causal Discovery of Hidden common cause in time series M Stippinger, B Varga, Z Benkő, D Fabó, L Erőss, Z Somogyvári, A Telcs Chaos, Solitons & Fractals 176, 114054, 2023 | 2 | 2023 |
Time Series and Interactions: Data Processing in Epilepsy Research Z Benkő, D Fabó, Z Somogyvári Computational Neurology and Psychiatry, 73-91, 2017 | 2 | 2017 |
Bayesian inference of causal relations between dynamical systems Z Benkő, Á Zlatniczki, M Stippinger, D Fabó, A Sólyom, L Erőss, A Telcs, ... Chaos, Solitons & Fractals 185, 115142, 2024 | 1 | 2024 |
Relaxation of Some Confusions about Confounders Á Zlatniczki, M Stippinger, Z Benkő, Z Somogyvári, A Telcs Entropy 23 (11), 1450, 2021 | 1 | 2021 |
Reconstructing shared dynamics with a deep neural network Z Benkő, Z Somogyvári arXiv preprint arXiv:2105.02322, 2021 | 1 | 2021 |
Inferring causal relations between neurophysiological signals with dimensional causality Z Benkő, M Stippinger, Á Zlatnicki, D Fabó, A Sólyom, L Erőss, ... IBRO Reports 6, S135, 2019 | 1 | 2019 |
Detecting Causality in the Frequency Domain with Cross-Mapping Coherence Z Benkő, B Varga, M Stippinger, Z Somogyvári arXiv preprint arXiv:2407.20694, 2024 | | 2024 |
COMPLETE INFERENCE OF CAUSAL RELATIONS: VALIDATION OF THE DIMENSIONAL CAUSALITY ANALYSIS METHOD ON EVOKED EPILEPTIC ACTIVITY IN VITRO Z Somogyvári, M Stippinger, Z Benkő, Á Zlatniczky, A Bencze, ... IBRO Neuroscience Reports 15, S800, 2023 | | 2023 |
Reconstructing common latent input from time series with the mapper-coach network and error backpropagation Z Benkő, Z Somogyvári arXiv preprint arXiv:2105.02322, 2021 | | 2021 |
FROM CLUSTERING TO CAUSALITY ANALYSIS: APPLICATION AND DEVELOPMENT OF SIGNAL PROCESSING METHODS IN A NEUROSCIENCE CONTEXT Z Benkő | | 2021 |
Ccdh: Complexity Based Causal Discovery of Hidden Common Cause (and Other Beasts) in Time Series B Varga, M Stippinger, Z Benkő, D Fabó, P Halász, L Erőss, Z Somogyvári, ... Available at SSRN 4294786, 0 | | |