Point cloud semantic segmentation using a deep learning framework for cultural heritage R Pierdicca, M Paolanti, F Matrone, M Martini, C Morbidoni, ES Malinverni, ... Remote Sensing 12 (6), 1005, 2020 | 193 | 2020 |
Comparing machine and deep learning methods for large 3D heritage semantic segmentation F Matrone, E Grilli, M Martini, M Paolanti, R Pierdicca, F Remondino ISPRS International Journal of Geo-Information 9 (9), 535, 2020 | 104 | 2020 |
Deep learning for semantic segmentation of 3D point cloud ES Malinverni, R Pierdicca, M Paolanti, M Martini, C Morbidoni, F Matrone, ... The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2019 | 60 | 2019 |
Robotic retail surveying by deep learning visual and textual data M Paolanti, L Romeo, M Martini, A Mancini, E Frontoni, P Zingaretti Robotics and Autonomous Systems 118, 179-188, 2019 | 49 | 2019 |
Open-world person re-identification with rgbd camera in top-view configuration for retail applications M Martini, M Paolanti, E Frontoni IEEE Access 8, 67756-67765, 2020 | 21 | 2020 |
Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds F Matrone, M Martini Virtual Archaeology Review 12 (25), 73-84, 2021 | 11 | 2021 |
Deep convolutional neural networks for sentiment analysis of cultural heritage M Paolanti, R Pierdicca, M Martini, A Felicetti, ES Malinverni, E Frontoni, ... The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2019 | 11 | 2019 |
Bubblex: An explainable deep learning framework for point-cloud classification F Matrone, M Paolanti, A Felicetti, M Martini, R Pierdicca IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2022 | 9 | 2022 |
Semantic 3D object maps for everyday robotic retail inspection M Paolanti, R Pierdicca, M Martini, F Di Stefano, C Morbidoni, A Mancini, ... New Trends in Image Analysis and Processing–ICIAP 2019: ICIAP International …, 2019 | 9 | 2019 |
A deep learning-based approach for automatic leather classification in industry 4.0 G Pazzaglia, M Martini, R Rosati, L Romeo, E Frontoni Pattern Recognition. ICPR International Workshops and Challenges: Virtual …, 2021 | 8 | 2021 |
Visual and textual sentiment analysis of daily news social media images by deep learning A Felicetti, M Martini, M Paolanti, R Pierdicca, E Frontoni, P Zingaretti Image Analysis and Processing–ICIAP 2019: 20th International Conference …, 2019 | 7 | 2019 |
Large language model, AI and scientific research: why ChatGPT is only the beginning. P Zangrossi, M Martini, F Guerrini, G Spena Journal of Neurosurgical Sciences, 2024 | 5 | 2024 |
Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sens. 2020; 12 (6): 1005 R Pierdicca, M Paolanti, F Matrone, M Martini, C Morbidoni, ES Malinverni, ... | 5 | |
SeSAME: Re-identification-based ambient intelligence system for museum environment M Paolanti, R Pierdicca, R Pietrini, M Martini, E Frontoni Pattern Recognition Letters 161, 17-23, 2022 | 3 | 2022 |
Automatic training data generation in Deep Learning-aided semantic segmentation of Heritage buildings A Murtiyoso, F Matrone, M Martini, A Lingua, P Grussenmeyer, ... ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information …, 2022 | 2 | 2022 |
Generative networks for point cloud generation in cultural heritage domain R Pierdicca, M Paolanti, R Quattrini, M Martini, ES Malinverni, E Frontoni ARQUEOLÓGICA 2.0 & GEORES, 134-141, 2021 | 2 | 2021 |
Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation M Francesca, G Eleonora, M Martini, M Paolanti, R Pierdicca, R Fabio ISPRS International Journal of Geo-Information, 2020 | 2 | 2020 |
Segmentazione semantica delle nuvole di punti utilizzando tecniche di apprendimento profondo per il patrimonio culturale R Pierdicca, M Paolanti, F Matrone, M Martini, C Morbidoni, E Malinverni, ... Bollettino della società italiana di fotogrammetria e topografia, 1-9, 2020 | 1 | 2020 |
Data augmentation strategy for generating realistic samples on defect segmentation task M Martini, R Rosati, L Romeo, A Mancini Procedia Computer Science 232, 1597-1606, 2024 | | 2024 |
Deep Learning based models for Space Understanding M Martini Università Politecnica delle Marche, 2022 | | 2022 |