A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data L Bourgeois, J Dardé Inverse Problems 26 (9), 095016, 2010 | 86 | 2010 |
About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains L Bourgeois, J Dardé Applicable Analysis 89 (11), 1745-1768, 2010 | 58 | 2010 |
A quasi-reversibility approach to solve the inverse obstacle problem L Bourgeois, J Dardé Inverse Probl. Imaging 4 (3), 351-377, 2010 | 58 | 2010 |
Fine-tuning electrode information in electrical impedance tomography J Dardé, H Hakula, N Hyvönen, S Staboulis, E Somersalo Inverse Probl. Imaging 6 (3), 399-421, 2012 | 53 | 2012 |
Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation J Dardé, N Hyvönen, A Seppänen, S Staboulis Inverse Problems 29 (8), 085004, 2013 | 52 | 2013 |
Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography J Dardé, N Hyvönen, A Seppänen, S Staboulis SIAM Journal on Imaging Sciences 6 (1), 176-198, 2013 | 51 | 2013 |
Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems J Dardé arXiv preprint arXiv:1503.08641, 2015 | 37 | 2015 |
An -Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems J Dardé, A Hannukainen, N Hyvonen SIAM Journal on Numerical Analysis 51 (4), 2123-2148, 2013 | 37 | 2013 |
Minimal time issues for the observability of Grushin-type equations K Beauchard, J Dardé, S Ervedoza Annales de l'Institut Fourier 70 (1), 247-312, 2020 | 33 | 2020 |
On the reachable set for the one-dimensional heat equation J Dardé, S Ervedoza SIAM Journal on Control and Optimization 56 (3), 1692-1715, 2018 | 32 | 2018 |
Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case E Bécache, L Bourgeois, L Franceschini, J Dardé Inverse Problems & Imaging 9 (4), 971, 2015 | 32 | 2015 |
The" exterior approach" to solve the inverse obstacle problem for the Stokes system L Bourgeois, J Dardé Inverse Problems & Imaging 8 (1), 23, 2014 | 30 | 2014 |
Electrode modelling: The effect of contact impedance J Dardé, S Staboulis ESAIM: Mathematical Modelling and Numerical Analysis 50 (2), 415-431, 2016 | 29 | 2016 |
Stability estimates for Navier-Stokes equations and application to inverse problems M Badra, F Caubet, J Dardé arXiv preprint arXiv:1609.03819, 2016 | 16 | 2016 |
An inverse obstacle problem for the wave equation in a finite time domain L Bourgeois, D Ponomarev, J Dardé Inverse Problems & Imaging 13 (2), 377, 2019 | 15 | 2019 |
Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography V Candiani, J Dardé, H Garde, N Hyvönen SIAM Journal on Mathematical Analysis 52 (6), 6234-6259, 2020 | 13 | 2020 |
On the cost of observability in small times for the one-dimensional heat equation J Dardé, S Ervedoza Analysis & PDE 12 (6), 1455-1488, 2019 | 13 | 2019 |
On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation F Caubet, J Dardé, M Godoy ESAIM: Control, Optimisation and Calculus of Variations 25, 30, 2019 | 9 | 2019 |
CONTACT ADAPTING ELECTRODE MODEL FOR ELECTRICAL IMPEDANCE TOMOGRAPHY J DARDÉ, N HYVÖNEN, T KUUTELA, T VALKONEN | 8* | 2022 |
A dual approach to Kohn-Vogelius regularization applied to data completion problem F Caubet, J Dardé Inverse Problems, 2020 | 8 | 2020 |