A comprehensive study on robustness of image classification models: Benchmarking and rethinking C Liu, Y Dong, W Xiang, X Yang, H Su, J Zhu, Y Chen, Y He, H Xue, ... International Journal of Computer Vision, 1-23, 2024 | 44 | 2024 |
Unrestricted adversarial attacks on imagenet competition Y Chen, X Mao, Y He, H Xue, C Li, Y Dong, QA Fu, X Yang, W Xiang, ... arXiv preprint arXiv:2110.09903, 2021 | 8 | 2021 |
You cannot easily catch me: A low-detectable adversarial patch for object detectors Z Zhu, H Su, C Liu, W Xiang, S Zheng arXiv preprint arXiv:2109.15177, 2021 | 7 | 2021 |
Improving the robustness of adversarial attacks using an affine-invariant gradient estimator W Xiang, H Su, C Liu, Y Guo, S Zheng Computer Vision and Image Understanding 229, 103647, 2023 | 6 | 2023 |
Model-agnostic meta-attack: Towards reliable evaluation of adversarial robustness X Yang, Y Dong, W Xiang, T Pang, H Su, J Zhu arXiv preprint arXiv:2110.08256, 2021 | 4 | 2021 |
Competition on robust deep learning Y Dong, C Liu, W Xiang, H Su, J Zhu National Science Review 10 (6), nwad087, 2023 | 3 | 2023 |
Adversarial attacks on ml defense models competition Y Dong, QA Fu, X Yang, W Xiang, T Pang, H Su, J Zhu, J Tang, Y Chen, ... arXiv preprint arXiv:2110.08042, 2021 | 2 | 2021 |
Improving model generalization by on-manifold adversarial augmentation in the frequency domain C Liu, W Xiang, Y He, H Xue, S Zheng, H Su arXiv preprint arXiv:2302.14302, 2023 | 1 | 2023 |
Improving Visual Quality of Unrestricted Adversarial Examples with Wavelet-VAE W Xiang, C Liu, S Zheng arXiv preprint arXiv:2108.11032, 2021 | 1 | 2021 |
AEMIM: Adversarial Examples Meet Masked Image Modeling W Xiang, C Liu, H Su, H Yu arXiv preprint arXiv:2407.11537, 2024 | | 2024 |