Prompt Distribution Learning Y Lu, J Liu, Y Zhang, Y Liu, X Tian CVPR 2022, 2022 | 185 | 2022 |
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs Y Chen, Y Zhang, H Yang, K Ma, B Xie, T Liu, B Han, J Cheng NeurIPS 2022, 2022 | 123* | 2022 |
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability Y Chen, H Yang, Y Zhang, K Ma, T Liu, B Han, J Cheng ICLR 2022, 2022 | 75 | 2022 |
CausalAdv: Adversarial Robustness Through the Lens of Causality Y Zhang, M Gong, T Liu, G Niu, X Tian, B Han, B Schölkopf, K Zhang ICLR 2022, 2022 | 71 | 2022 |
Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning Z Tang*, Y Zhang*, S Shi, X He, B Han, X Chu ICML 2022, 2022 | 63 | 2022 |
Principal Component Adversarial Example Y Zhang, X Tian, Y Li, X Wang, D Tao TIP 2020, 2020 | 51 | 2020 |
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization Y Chen, K Zhou, Y Bian, B Xie, K Ma, Y Zhang, H Yang, B Han, J Cheng ICLR 2023, 2023 | 45 | 2023 |
Meta Convolutional Neural Networks for Single Domain Generalization C Wan, X Shen, Y Zhang, Z Yin, X Tian, F Gao, J Huang, XS Hua CVPR 2022, 2022 | 38 | 2022 |
Class-Disentanglement and Applications in Adversarial Detection and Defense K Yang, T Zhou, Y Zhang, X Tian, D Tao NeurIPS 2021, 2021 | 34 | 2021 |
Watermarking for Out-of-distribution Detection Q Wang, F Liu, Y Zhang, J Zhang, C Gong, T Liu, B Han NeurIPS 2022, 2022 | 26 | 2022 |
FedFed: Feature Distillation against Data Heterogeneity in Federated Learning Z Yang*, Y Zhang*, Y Zheng, X Tian, H Peng, T Liu, B Han NeurIPS 2023, 2023 | 16 | 2023 |
Hard Sample Matters a Lot in Zero-Shot Quantization H Li*, X Wu, F Lv, D Liao, TH Li, Y Zhang*, B Han, M Tan CVPR 2023, 2023 | 14 | 2023 |
Learning to augment distributions for out-of-distribution detection Q Wang, Z Fang, Y Zhang, F Liu, Y Li, B Han NeurIPS 2023, 2023 | 13 | 2023 |
Towards Lightweight Black-Box Attacks against Deep Neural Networks C Sun, Y Zhang, W Chaoqun, Q Wang, Y Li, T Liu, B Han, X Tian NeurIPS 2022, 2022 | 13 | 2022 |
Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks Y Zhang, Y Li, T Liu, X Tian ICML 2020, 2020 | 12 | 2020 |
Moderately Distributional Exploration for Domain Generalization R Dai, Y Zhang*, Z Fang, B Han, X Tian* ICML 2023, 2023 | 11 | 2023 |
FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training Z Tang, X Chu, RY Ran, S Lee, S Shi, Y Zhang, Y Wang, AQ Liang, ... Preprint, 2023 | 6 | 2023 |
Out-of-Distribution Detection with Negative Prompts J Nie, Y Zhang, Z Fang, T Liu, B Han, X Tian ICLR 2024, 2024 | 5 | 2024 |
Continual Named Entity Recognition without Catastrophic Forgetting D Zhang, W Cong, J Dong, Y Yu, X Chen, Y Zhang, Z Fang EMNLP 2023, 2023 | 5 | 2023 |
Invariant Learning via Probability of Sufficient and Necessary Causes M Yang, Z Fang, Y Zhang*, Y Du, F Liu, JF Ton, J Wang* NeurIPS 2023 (Spotlight), 2023 | 5 | 2023 |