关注
Marijn Schraagen
Marijn Schraagen
在 phil.uu.nl 的电子邮件经过验证
标题
引用次数
引用次数
年份
Population reconstruction
G Bloothooft, P Christen, K Mandemakers, M Schraagen
Springer 10, 978-3, 2015
312015
Public sentiment on governmental COVID-19 measures in Dutch social media
S Wang, M Schraagen, ETK Sang, M Dastani
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020, 2020
292020
Same Author or Just Same Topic? Towards Content-Independent Style Representations
A Wegmann, M Schraagen, D Nguyen
arXiv preprint arXiv:2204.04907, 2022
282022
The CLIN27 shared task: Translating historical text to contemporary language for improving automatic linguistic annotation
ETK Sang, M Bollmann, R Boschker, F Casacuberta, F Dietz, S Dipper, ...
Computational Linguistics in the Netherlands Journal 7, 53-64, 2017
272017
Transforming epilepsy research: A systematic review on natural language processing applications
ANJ Yew, M Schraagen, WM Otte, E van Diessen
Epilepsia 64 (2), 292-305, 2023
252023
Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods
B van Es, LC Reteig, SC Tan, M Schraagen, MM Hemker, SRS Arends, ...
BMC bioinformatics 24 (1), 10, 2023
192023
Evaluation of Named Entity Recognition in Dutch online criminal complaints
MP Schraagen, MJS Brinkhuis, FJ Bex
Computational Linguistics in the Netherlands Journal 7, 3-16, 2017
182017
Aspects of record linkage
M Schraagen
Diss. Leiden University. http://hdl. handle. net/1887/29716, 2014
15*2014
Extraction of semantic relations in noisy user-generated law enforcement data
M Schraagen, F Bex
2019 IEEE 13th International Conference on Semantic Computing (ICSC), 79-86, 2019
142019
Dutch general public reaction on governmental covid-19 measures and announcements in twitter data
S Wang, M Schraagen, ETK Sang, M Dastani
arXiv preprint arXiv:2006.07283, 2020
132020
Argumentation-driven information extraction for online crime reports
MP Schraagen, FJ Bex, D Odekerken, BJG Testerink
International workshop on legal data analysis and mining (LeDAM 2018): CEUR …, 2018
112018
Learning name variants from inexact high-confidence matches
G Bloothooft, M Schraagen
Population reconstruction, 61-83, 2015
112015
Name fashion dynamics and social class
G Bloothooft, M Schraagen
Proceedings of the XXIV-International Conference of Onomastic Sciences, 2011
72011
Predicting record linkage potential in a family reconstruction graph
M Schraagen, HJ Hoogeboom
Proceedings of 23rd Benelux Conference on Artificial Intelligence (BNAIC …, 2011
72011
Record linkage using graph consistency
M Schraagen, W Kosters
Machine Learning and Data Mining in Pattern Recognition: 10th International …, 2014
62014
Complete coverage for approximate string matching in record linkage using bit vectors
M Schraagen
2011 IEEE 23rd International Conference on Tools with Artificial …, 2011
52011
Evaluating Repetitions, or how to Improve your Multilingual ASR System by doing Nothing.
M Schraagen, G Bloothooft
LREC, 2010
52010
Abstractive Summarization of Dutch Court Verdicts Using Sequence-to-sequence Models
M Schraagen, F Bex, N Van De Luijtgaarden, D Prijs
Proceedings of the Natural Legal Language Processing Workshop 2022, 76-87, 2022
42022
Classification in a Skewed Online Trade Fraud Complaint Corpus
W Kos, MP Schraagen, MJS Brinkhuis, FJ Bex
Preproceedings of the 29th Benelux Conference on Artificial Intelligence …, 2017
42017
Learning name variants from true person resolution
G Bloothooft, M Schraagen
Proceedings of the International Workhop on Population Reconstruction …, 2014
42014
系统目前无法执行此操作,请稍后再试。
文章 1–20