关注
Leon Sixt
Leon Sixt
PhD Student, Frei Universität Berlin
在 fu-berlin.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
RenderGAN: Generating realistic labeled data
L Sixt, B Wild, T Landgraf
Frontiers in Robotics and AI 5, 66, 2018
2042018
Restricting the Flow: Information Bottlenecks for Attribution
K Schulz, L Sixt, F Tombari, T Landgraf
International Conference on Learning Representations, 2020
1902020
When Explanations Lie: Why Many Modified BP Attributions Fail
L Sixt, M Granz, T Landgraf
International Conference on Machine Learning, 9046-9057, 2020
157*2020
Automatic localization and decoding of honeybee markers using deep convolutional neural networks
B Wild, L Sixt, T Landgraf
arXiv preprint arXiv:1802.04557, 2018
242018
Do users benefit from interpretable vision? a user study, baseline, and dataset
L Sixt, M Schuessler, OI Popescu, P Weiß, T Landgraf
arXiv preprint arXiv:2204.11642, 2022
152022
DNNR: Differential nearest neighbors regression
Y Nader, L Sixt, T Landgraf
International Conference on Machine Learning, 16296-16317, 2022
92022
Rendergan: Generating realistic labeled data–with an application on decoding bee tags
L Sixt
unpublished Bachelor Thesis, Freie Universität, Berlin, 2016
92016
Interpretability through invertibility: A deep convolutional network with ideal counterfactuals and isosurfaces
L Sixt, M Schuessler, P Weiß, T Landgraf
42021
A Rigorous Study Of The Deep Taylor Decomposition
L Sixt, T Landgraf
Transactions on Machine Learning Research, 2022
32022
Analyzing a Caching Model
L Sixt, EZ Liu, M Pellat, J Wexler, H Milad, B Kim, M Maas
arXiv preprint arXiv:2112.06989, 2021
22021
Two4two: Evaluating interpretable machine learning-a synthetic dataset for controlled experiments
M Schuessler, P Weiß, L Sixt
arXiv preprint arXiv:2105.02825, 2021
22021
Enhancing And Evaluating Interpretability In Machine Learning Through Theory And Practice
L Sixt
2023
The emojicite package Adds Emojis to Citations
L Sixt
系统目前无法执行此操作,请稍后再试。
文章 1–13