关注
Michael Anton Kraus
Michael Anton Kraus
Professor for Structural Mechanics and Design, ISMD, TU Darmstadt
在 ismd.tu-darmstadt.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Multi-objective loss balancing for physics-informed deep learning
R Bischof, M Kraus
arXiv preprint arXiv:2110.09813, 2021
942021
Parameter identification methods for visco-and hyperelastic material models
MA Kraus, M Schuster, J Kuntsche, G Siebert, J Schneider
Glass Structures & Engineering 2 (2), 147-167, 2017
702017
Machine learning techniques for the material parameter identification of laminated glass in the intact and post-fracture state
MA Kraus
Universität der Bundeswehr, 2019
39*2019
Artificial intelligence for structural glass engineering applications—overview, case studies and future potentials
MA Kraus, M Drass
Glass Structures & Engineering 5 (3), 247-285, 2020
352020
Relationship between strain energy and fracture pattern morphology of thermally tempered glass for the prediction of the 2D macro-scale fragmentation of glass
N Pourmoghaddam, MA Kraus, J Schneider, G Siebert
Glass Structures & Engineering 4 (2), 257-275, 2019
342019
Investigations on the thermorheologically complex material behaviour of the laminated safety glass interlayer ethylene-vinyl-acetate
M Schuster, M Kraus, J Schneider, G Siebert
Glass Structures & Engineering 3 (2), 373-388, 2018
252018
Generalized collocation method using Stiffness matrices in the context of the Theory of Linear viscoelasticity (GUSTL)
MA Kraus, M Niederwald
Technische Mechanik-European Journal of Engineering Mechanics 37 (1), 82-106, 2017
222017
Experimental determination of the shear modulus of polymeric interlayers used in laminated glass
M Botz, MA Kraus, G Siebert
Proceedings of GlassCon Global, Chicago, 31-38, 2018
132018
The geometrical properties of random 2D Voronoi tesselations for the prediction of the tempered glass fracture pattern
N Pourmoghaddam, MA Kraus, J Schneider, G Siebert
ce/papers 2 (5-6), 325-339, 2018
122018
Scientific machine and deep learning investigations of the local buckling behaviour of hollow sections
A Müller, A Taras, MA Kraus
ce/papers 5 (4), 1034-1042, 2022
112022
Semantic segmentation with deep learning: detection of cracks at the cut edge of glass
M Drass, H Berthold, MA Kraus, S Müller-Braun
Glass Structures & Engineering 6 (1), 21-37, 2021
112021
Automated quality control of vacuum insulated glazing by convolutional neural network image classification
H Riedel, S Mokdad, I Schulz, C Kocer, PL Rosendahl, J Schneider, ...
Automation in Construction 135, 104144, 2022
102022
Mixture-of-experts-ensemble meta-learning for physics-informed neural networks
R Bischof, MA Kraus
Proceedings of 33. Forum Bauinformatik, 2022
102022
Physik‐informierte Künstliche Intelligenz zur Berechnung und Bemessung im Stahlbau
MA Kraus, A Taras
Stahlbau 89 (10), 824-832, 2020
102020
Semi-probabilistic calibration of a partial material safety factor for structural silicone adhesives—part I: derivation
M Drass, MA Kraus
Int. J. Struct. Glass Adv. Mater. Res 4 (1), 56-68, 2020
102020
Untersuchungen zur thermomechanischen Modellierung der Resttragfähigkeit von Verbundglas
M Botz, MA Kraus, G Siebert
ce/papers 3 (1), 125-136, 2019
102019
SoundLab AI-Machine learning for sound insulation value predictions of various glass assemblies
M Drass, MA Kraus, H Riedel, I Stelzer
Glass Structures & Engineering 7 (1), 101-118, 2022
92022
Künstliche Intelligenz–multiskale und cross‐domäne Synergien von Raumfahrt und Bauwesen
MA Kraus, M Drass, B Hörsch, J Schneider, W Kaufmann
BetonKalender 2022: Nachhaltigkeit, Digitalisierung, Instandhaltung, 607-690, 2022
92022
Mixed reality applications for teaching structural design
MA Kraus, I Čustović, W Kaufmann
Structures Congress 2022, 283-295, 2022
92022
Dimensioning of silicone adhesive joints: Eurocode-compliant, mesh-independent approach using the FEM
M Drass, MA Kraus
Glass Structures & Engineering 5 (3), 349-369, 2020
92020
系统目前无法执行此操作,请稍后再试。
文章 1–20