Extending geometric singular perturbation theory to nonhyperbolic points---fold and canard points in two dimensions M Krupa, P Szmolyan SIAM journal on mathematical analysis 33 (2), 286-314, 2001 | 585 | 2001 |
Relaxation oscillation and canard explosion M Krupa, P Szmolyan Journal of Differential Equations 174 (2), 312-368, 2001 | 518 | 2001 |
Canards in R3 P Szmolyan, M Wechselberger Journal of Differential Equations 177 (2), 419-453, 2001 | 398 | 2001 |
Transversal heteroclinic and homoclinic orbits in singular perturbation problems P Szmolyan Journal of differential equations 92 (2), 252-281, 1991 | 200 | 1991 |
Extending slow manifolds near transcritical and pitchfork singularities M Krupa, P Szmolyan Nonlinearity 14 (6), 1473, 2001 | 173 | 2001 |
Fast and slow waves in the FitzHugh–Nagumo equation M Krupa, B Sandstede, P Szmolyan Journal of Differential Equations 133 (1), 49-97, 1997 | 166 | 1997 |
Relaxation oscillations in R3 P Szmolyan, M Wechselberger Journal of Differential Equations 200 (1), 69-104, 2004 | 154 | 2004 |
Geometry of mixed-mode oscillations in the 3-d autocatalator A Milik, P Szmolyan, H Löffelmann, E Gröller International Journal of Bifurcation and Chaos 8 (03), 505-519, 1998 | 133 | 1998 |
Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves H Freistűhler, P Szmolyan SIAM Journal on Mathematical Analysis 26 (1), 112-128, 1995 | 103 | 1995 |
Spectral stability of small shock waves H Freistühler, P Szmolyan Archive for rational mechanics and analysis 164, 287-309, 2002 | 77 | 2002 |
Scaling in singular perturbation problems: blowing up a relaxation oscillator I Kosiuk, P Szmolyan SIAM Journal on Applied Dynamical Systems 10 (4), 1307-1343, 2011 | 68 | 2011 |
Multiple time scales and canards in a chemical oscillator A Milik, P Szmolyan Multiple-time-scale dynamical systems, 117-140, 2001 | 68 | 2001 |
A geometric singular perturbation analysis of detonation and deflagration waves I Gasser, P Szmolyan SIAM journal on mathematical analysis 24 (4), 968-986, 1993 | 67 | 1993 |
Geometric singular perturbation analysis of an autocatalator model I Gucwa, P Szmolyan Discrete and Continuous Dynamical Systems¿ Series S 2 (4), 783, 2009 | 65 | 2009 |
Geometric analysis of the singularly perturbed planar fold M Krupa, P Szmolyan Multiple-time-scale dynamical systems, 89-116, 2001 | 47 | 2001 |
A system of convection—diffusion equations with small diffusion coefficient arising in semiconductor physics PA Markowich, P Szmolyan Journal of Differential Equations 81 (2), 234-254, 1989 | 47 | 1989 |
Asymptotic expansions using blow-up S Van Gils, M Krupa*, P Szmolyan* Zeitschrift für angewandte Mathematik und Physik ZAMP 56, 369-397, 2005 | 45 | 2005 |
Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle I Kosiuk, P Szmolyan Journal of mathematical biology 72, 1337-1368, 2016 | 43 | 2016 |
Geometric desingularization of degenerate singularities in the presence of fast rotation: A new proof of known results for slow passage through Hopf bifurcations MG Hayes, TJ Kaper, P Szmolyan, M Wechselberger Indagationes Mathematicae 27 (5), 1184-1203, 2016 | 42 | 2016 |
Multiscale geometry of the Olsen model and non-classical relaxation oscillations C Kuehn, P Szmolyan Journal of Nonlinear Science 25, 583-629, 2015 | 42 | 2015 |