Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations A Ern, M Vohralík SIAM Journal on Numerical Analysis 53 (2), 1058-1081, 2015 | 210 | 2015 |
Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs A Ern, M Vohralík SIAM Journal on Scientific Computing 35 (4), A1761-A1791, 2013 | 199 | 2013 |
A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations M Vohralík SIAM Journal on Numerical Analysis 45 (4), 1570-1599, 2007 | 191 | 2007 |
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems A Ern, AF Stephansen, M Vohralík Journal of computational and applied mathematics 234 (1), 114-130, 2010 | 172 | 2010 |
A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems R Eymard, D Hilhorst, M Vohralík Numerische Mathematik 105 (1), 73-131, 2006 | 153 | 2006 |
A posteriori error estimates including algebraic error and stopping criteria for iterative solvers P Jiránek, Z Strakoš, M Vohralík SIAM Journal on Scientific Computing 32 (3), 1567-1590, 2010 | 143 | 2010 |
An accurate flux reconstruction for discontinuous Galerkin approximations of elliptic problems A Ern, S Nicaise, M Vohralík Comptes Rendus. Mathématique 345 (12), 709-712, 2007 | 130 | 2007 |
A posteriori error estimation based on potential and flux reconstruction for the heat equation A Ern, M Vohralík SIAM Journal on Numerical Analysis 48 (1), 198-223, 2010 | 124 | 2010 |
Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems L El Alaoui, A Ern, M Vohralík Computer Methods in Applied Mechanics and Engineering 200 (37-40), 2782-2795, 2011 | 123 | 2011 |
Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients M Vohralík Journal of Scientific Computing 46 (3), 397-438, 2011 | 108 | 2011 |
Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model J Maryška, O Severýn, M Vohralík Computational Geosciences 8, 217-234, 2005 | 102 | 2005 |
On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 M Vohralík Numerical functional analysis and optimization 26 (7-8), 925-952, 2005 | 98 | 2005 |
A unified framework for a posteriori error estimation for the Stokes problem A Hannukainen, R Stenberg, M Vohralík Numerische Mathematik 122 (4), 725-769, 2012 | 90 | 2012 |
Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods M Vohralík Mathematics of computation 79 (272), 2001-2032, 2010 | 87 | 2010 |
Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods M Vohralík Numerische Mathematik 111 (1), 121-158, 2008 | 79 | 2008 |
A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows M Vohralík, MF Wheeler Computational Geosciences 17, 789-812, 2013 | 77 | 2013 |
Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods M Vohralík, BI Wohlmuth Mathematical Models and Methods in Applied Sciences 23 (05), 803-838, 2013 | 70 | 2013 |
Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes M Vohralík ESAIM: Mathematical Modelling and Numerical Analysis 40 (2), 367-391, 2006 | 66 | 2006 |
Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems A Ern, I Smears, M Vohralík SIAM Journal on Numerical Analysis 55 (6), 2811-2834, 2017 | 65 | 2017 |
An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow C Cancès, I Pop, M Vohralík Mathematics of Computation 83 (285), 153-188, 2014 | 64 | 2014 |