关注
Jyoti Leeka
Jyoti Leeka
Senior Research Scientist, SQL Server, Microsoft
在 microsoft.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML
CIDR, 2020
37*2020
Incorporating Super-Operators in Big-Data Query Optimizers
J Leeka, K Rajan
PVLDB, 2019
212019
A formal graph model for RDF and its implementation
V Nguyen, J Leeka, O Bodenreider, A Sheth
arXiv preprint arXiv:1606.00480, 2016
172016
INSTalytics: Cluster Filesystem Co-design for Big-data Analytics
M Sivathanu, M Vuppalapati, BS Gulavani, K Rajan, J Leeka, J Mohan, ...
ACM Transactions on Storage (TOS) 15 (4), 1-30, 2020
122020
RQ-RDF-3X: going beyond triplestores
J Leeka, S Bedathur
2014 IEEE 30th International Conference on Data Engineering Workshops, 263-268, 2014
112014
Quark-X An Efficient Top-K Processing Framework for RDF Quad Stores
J Leeka, S Bedathur, D Bera, M Atre
Proceedings of the 25th ACM International on Conference on Information and …, 2016
82016
Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady, et al. 2021. The cosmos big data platform at Microsoft: over a decade of progress and a decade to look forward
C Power, H Patel, A Jindal, J Leeka, B Jenkins, M Rys
Proceedings of the VLDB Endowment 14 (12), 3148-3161, 2021
62021
Production Experiences from Computation Reuse at Microsoft
A Jindal, S Qiao, H Patel, A Roy, J Leeka, B Haynes.
EDBT, 2021
62021
The Cosmos Big Data Platform at Microsoft: Over a Decade of Progress and a Decade to Look Forward
C Power, H Patel, A Jindal, J Leeka, B Jenkins, M Rys, E Triou, D Zhu, ...
VLDB, 2021
52021
Wangchao Le, Xiangnan Li, Kaushik Ravichandran, Hiren Patel, Marc Friedman, Brandon Haynes, Shi Qiao, Alekh Jindal, and Jyoti Leeka.“Pipemizer: An Optimizer for Analytics Data …
S Gakhar, J Cahoon
Proceedings of the VLDB Endowment (PVLDB), 2022
42022
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML. arXiv e-prints, page
A Agrawal, R Chatterjee, C Curino, A Floratou, N Gowdal, M Interlandi, ...
arXiv preprint arXiv:1909.00084, 2019
42019
Towards Building Autonomous Data Services on Azure
Y Zhu, Y Tian, J Cahoon, S Krishnan, A Agarwal, R Alotaibi, ...
Companion of the 2023 International Conference on Management of Data, 217-224, 2023
32023
Unshackling Database Benchmarking from Synthetic Workloads
P Negi, L Bindschaedler, M Alizadeh, T Kraska, J Leeka, A Gruenheid, ...
2023 IEEE 39th International Conference on Data Engineering (ICDE), 3659-3662, 2023
32023
Pipemizer: An Optimizer for Analytics Data Pipelines
S Gakhar, J Cahoon, W Le, X Li, K Ravichandran, H Patel, M Friedman, ...
PVLDB, 2022
32022
Query Optimizer as a Service: An Idea Whose Time Has Come
A Jindal, J Leeka
SIGMOD Record, 2022
32022
Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady, Joshua Rowe, Fan Zhang, Rich Draves, Marc Friedman, Ivan Santa Maria Filho, and Amrish Kumar. 2021. The Cosmos Big …
C Power, H Patel, A Jindal, J Leeka, B Jenkins, M Rys
Proc. VLDB Endow 14 (12), 3148-3161, 2021
32021
Proactive Resource Allocation Policy for Microsoft Azure Cognitive Search
O Poppe, P Castro, W Lang, J Leeka
ACM SIGMOD Record 52 (3), 41-48, 2023
22023
STREAK: An efficient engine for processing top-k SPARQL queries with spatial filters
J Leeka, S Bedathur, D Bera, S Lakshminarasimhan
arXiv preprint arXiv:1710.07411, 2017
12017
Sibyl: Forecasting Time-Evolving Query Workloads
H Huang, T Siddiqui, R Alotaibi, C Curino, J Leeka, A Jindal, J Zhao, ...
Proceedings of the ACM on Management of Data 2 (1), 1-27, 2024
2024
Query set optimization in a data analytics pipeline
J Leeka, S Gakhar, HS Patel, MT Friedman, B Haynes, Q Shi, A Jindal
US Patent 11,847,118, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20