Is it time to replace cnns with transformers for medical images? C Matsoukas, JF Haslum, M Söderberg, K Smith arXiv preprint arXiv:2108.09038, 2021 | 174 | 2021 |
What makes transfer learning work for medical images: Feature reuse & other factors C Matsoukas, JF Haslum, M Sorkhei, M Söderberg, K Smith Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 83 | 2022 |
Adding seemingly uninformative labels helps in low data regimes C Matsoukas, AB Hernandez, Y Liu, K Dembrower, G Miranda, E Konuk, ... International Conference on Machine Learning, 6775-6784, 2020 | 18 | 2020 |
Pretrained ViTs yield versatile representations for medical images C Matsoukas, JF Haslum, M Söderberg, K Smith arXiv preprint arXiv:2303.07034, 2023 | 13* | 2023 |
Are Natural Domain Foundation Models Useful for Medical Image Classification? JP Huix, AR Ganeshan, JF Haslum, M Söderberg, C Matsoukas, K Smith Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024 | 12 | 2024 |
Cell Painting-based bioactivity prediction boosts high-throughput screening hit-rates and compound diversity J Fredin Haslum, CH Lardeau, J Karlsson, R Turkki, KJ Leuchowius, ... Nature Communications 15 (1), 3470, 2024 | 5 | 2024 |
Metadata-guided consistency learning for high content images JF Haslum, C Matsoukas, KJ Leuchowius, E Müllers, K Smith Medical Imaging with Deep Learning, 918-936, 2024 | 5 | 2024 |
Is it time to replace CNNs with transformers for medical images?(2021) C Matsoukas, JF Haslum, M Söderberg, K Smith arXiv preprint arXiv:2108.09038, 0 | 5 | |
Bridging generalization gaps in high content imaging through online self-supervised domain adaptation JF Haslum, C Matsoukas, KJ Leuchowius, K Smith Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024 | 2 | 2024 |
Machine Learning Methods for Image-based Phenotypic Profiling in Early Drug Discovery J Fredin Haslum KTH Royal Institute of Technology, 2024 | | 2024 |