关注
Ilya Feige
Ilya Feige
Global Head of AI & ML, Cerberus
在 cerberusuk.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Asymmetric shapley values: incorporating causal knowledge into model-agnostic explainability
C Frye, C Rowat, I Feige
Advances in neural information processing systems 33, 1229-1239, 2020
2222020
JUNIPR: a framework for unsupervised machine learning in particle physics
A Andreassen, I Feige, C Frye, MD Schwartz
The European Physical Journal C 79 (2), 102, 2019
1572019
Shapley explainability on the data manifold
C Frye, D de Mijolla, T Begley, L Cowton, M Stanley, I Feige
International Conference on Learning Representations, 2021
1432021
Hard-soft-collinear factorization to all orders
I Feige, MD Schwartz
Physical Review D 90 (10), 105020, 2014
1282014
A complete basis of helicity operators for subleading factorization
I Feige, DW Kolodrubetz, I Moult, IW Stewart
Journal of High Energy Physics 2017 (11), 1-109, 2017
902017
Precision jet substructure from boosted event shapes
I Feige, MD Schwartz, IW Stewart, J Thaler
Physical Review Letters 109 (9), 092001, 2012
902012
Explainability for fair machine learning
T Begley, T Schwedes, C Frye, I Feige
arXiv preprint arXiv:2010.07389, 2020
532020
An on-shell approach to factorization
I Feige, MD Schwartz
Physical Review D—Particles, Fields, Gravitation, and Cosmology 88 (6), 065021, 2013
432013
binary junipr: An Interpretable Probabilistic Model for Discrimination
A Andreassen, I Feige, C Frye, MD Schwartz
Physical review letters 123 (18), 182001, 2019
282019
Improving Gaussian mixture latent variable model convergence with Optimal Transport
B Gaujac, I Feige, D Barber
Asian Conference on Machine Learning, 737-752, 2021
14*2021
Streamlining resummed QCD calculations using Monte Carlo integration
D Farhi, I Feige, M Freytsis, MD Schwartz
Journal of High Energy Physics 2016 (8), 1-34, 2016
122016
Removing phase-space restrictions in factorized cross sections
I Feige, MD Schwartz, K Yan
Physical Review D 91 (9), 094027, 2015
122015
Human-interpretable model explainability on high-dimensional data
D de Mijolla, C Frye, M Kunesch, J Mansir, I Feige
arXiv preprint arXiv:2010.07384, 2020
112020
Invariant-equivariant representation learning for multi-class data
I Feige
International Conference on Machine Learning, 1882-1891, 2019
92019
Learning disentangled representations with the wasserstein autoencoder
B Gaujac, I Feige, D Barber
Machine Learning and Knowledge Discovery in Databases. Research Track …, 2021
82021
Parenting: Safe reinforcement learning from human input
C Frye, I Feige
arXiv preprint arXiv:1902.06766, 2019
82019
Representation Learning for High-Dimensional Data Collection under Local Differential Privacy
A Mansbridge, G Barbour, D Piras, M Murray, C Frye, I Feige, D Barber
arXiv preprint arXiv:2010.12464, 2020
7*2020
Large-scale calibration and simulation of COVID-19 epidemiologic scenarios to support healthcare planning
N Groves-Kirkby, E Wakeman, S Patel, R Hinch, T Poot, J Pearson, ...
Epidemics 42, 100662, 2023
42023
Task-specific experimental design for treatment effect estimation
B Connolly, K Moore, T Schwedes, A Adam, G Willis, I Feige, C Frye
International Conference on Machine Learning, 6384-6401, 2023
22023
Improving latent variable descriptiveness by modelling rather than ad-hoc factors
A Mansbridge, R Fierimonte, I Feige, D Barber
Machine Learning 108, 1601-1611, 2019
2*2019
系统目前无法执行此操作,请稍后再试。
文章 1–20