关注
Julia Olkhovskaya
Julia Olkhovskaya
在 tudelft.nl 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Efficient and robust algorithms for adversarial linear contextual bandits
G Neu, J Olkhovskaya
Conference on Learning Theory, 3049-3068, 2020
482020
Online learning in MDPs with linear function approximation and bandit feedback.
G Neu, J Olkhovskaya
Advances in Neural Information Processing Systems 34, 10407-10417, 2021
292021
Lifting the information ratio: An information-theoretic analysis of thompson sampling for contextual bandits
G Neu, I Olkhovskaia, M Papini, L Schwartz
Advances in Neural Information Processing Systems 35, 9486-9498, 2022
132022
First-and second-order bounds for adversarial linear contextual bandits
J Olkhovskaya, J Mayo, T van Erven, G Neu, CY Wei
Advances in Neural Information Processing Systems 36, 2024
82024
Online influence maximization with local observations
G Lugosi, G Neu, J Olkhovskaya
Algorithmic Learning Theory, 557-580, 2019
8*2019
Kernelized reinforcement learning with order optimal regret bounds
S Vakili, J Olkhovskaya
Advances in Neural Information Processing Systems 36, 2024
42024
Improved Regret Bounds for Bandits with Expert Advice
N Cesa-Bianchi, K Eldowa, E Esposito, J Olkhovskaya
arXiv preprint arXiv:2406.16802, 2024
2024
Adversarial Contextual Bandits Go Kernelized
G Neu, J Olkhovskaya, S Vakili
International Conference on Algorithmic Learning Theory, 907-929, 2024
2024
Adversarial Contextual Bandits Go Kernelized
G Neu, J Olkhovskaya, S Vakili
arXiv preprint arXiv:2310.01609, 2023
2023
Analyzing Thompson Sampling for Contextual Bandits via the Lifted Information Ratio
G Neu, J Olkhovskaya, M Papini, L Schwartz
2022
Large-scale online learning under partial feedback
I Olkhovskaia
Universitat Pompeu Fabra, 2022
2022
Learning to maximize global influence from local observations
G Lugosi, G Neu, J Olkhovskaya
arXiv preprint arXiv:2109.11909, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–12