Adaptive importance sampling: The past, the present, and the future MF Bugallo, V Elvira, L Martino, D Luengo, J Miguez, PM Djuric IEEE Signal Processing Magazine 34 (4), 60-79, 2017 | 258 | 2017 |
Latent force models M Alvarez, D Luengo, ND Lawrence Artificial intelligence and statistics, 9-16, 2009 | 234 | 2009 |
Generalized multiple importance sampling V Elvira, L Martino, D Luengo, MF Bugallo | 187 | 2019 |
A survey of Monte Carlo methods for parameter estimation D Luengo, L Martino, M Bugallo, V Elvira, S Särkkä EURASIP Journal on Advances in Signal Processing 2020, 1-62, 2020 | 181 | 2020 |
Efficient multioutput Gaussian processes through variational inducing kernels M Álvarez, D Luengo, M Titsias, ND Lawrence Proceedings of the Thirteenth International Conference on Artificial …, 2010 | 153 | 2010 |
Efficient monte carlo methods for multi-dimensional learning with classifier chains J Read, L Martino, D Luengo Pattern Recognition 47 (3), 1535-1546, 2014 | 138 | 2014 |
Linear latent force models using Gaussian processes MA Álvarez, D Luengo, ND Lawrence IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35 (11 …, 2013 | 137 | 2013 |
Layered adaptive importance sampling L Martino, V Elvira, D Luengo, J Corander Statistics and Computing 27, 599-623, 2017 | 135 | 2017 |
Independent doubly adaptive rejection Metropolis sampling within Gibbs sampling L Martino, J Read, D Luengo IEEE Transactions on Signal Processing 63 (12), 3123-3138, 2015 | 115 | 2015 |
Scalable multi-output label prediction: From classifier chains to classifier trellises J Read, L Martino, PM Olmos, D Luengo Pattern Recognition 48 (6), 2096-2109, 2015 | 108 | 2015 |
Improving population Monte Carlo: Alternative weighting and resampling schemes V Elvira, L Martino, D Luengo, MF Bugallo Signal Processing 131, 77-91, 2017 | 103 | 2017 |
Orthogonal parallel MCMC methods for sampling and optimization L Martino, V Elvira, D Luengo, J Corander, F Louzada Digital Signal Processing 58, 64-84, 2016 | 99 | 2016 |
Efficient multiple importance sampling estimators V Elvira, L Martino, D Luengo, MF Bugallo IEEE Signal Processing Letters 22 (10), 1757-1761, 2015 | 98 | 2015 |
An adaptive population importance sampler: Learning from uncertainty L Martino, V Elvira, D Luengo, J Corander IEEE Transactions on Signal Processing 63 (16), 4422-4437, 2015 | 97 | 2015 |
Independent random sampling methods L Martino, D Luengo, J Míguez Springer International Publishing, 2018 | 91 | 2018 |
Physics-aware Gaussian processes in remote sensing G Camps-Valls, L Martino, DH Svendsen, M Campos-Taberner, ... Applied Soft Computing 68, 69-82, 2018 | 87 | 2018 |
Feature extraction of galvanic skin responses by nonnegative sparse deconvolution F Hernando-Gallego, D Luengo, A Artés-Rodríguez IEEE journal of biomedical and health informatics 22 (5), 1385-1394, 2017 | 67 | 2017 |
Efficient Monte Carlo optimization for multi-label classifier chains J Read, L Martino, D Luengo 2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013 | 56 | 2013 |
Heretical multiple importance sampling V Elvira, L Martino, D Luengo, MF Bugallo IEEE Signal Processing Letters 23 (10), 1474-1478, 2016 | 53 | 2016 |
A fast universal self-tuned sampler within Gibbs sampling L Martino, H Yang, D Luengo, J Kanniainen, J Corander Digital Signal Processing 47, 68-83, 2015 | 51 | 2015 |