Randomized algorithms for rounding in the tensor-train format H Al Daas, G Ballard, P Cazeaux, E Hallman, A Międlar, M Pasha, ... SIAM Journal on Scientific Computing 45 (1), A74-A95, 2023 | 21 | 2023 |
Krylov-aware stochastic trace estimation T Chen, E Hallman SIAM Journal on Matrix Analysis and Applications 44 (3), 1218-1244, 2023 | 20 | 2023 |
A multilevel approach to stochastic trace estimation E Hallman, D Troester Linear Algebra and its Applications 638, 125-149, 2022 | 15 | 2022 |
Monte Carlo methods for estimating the diagonal of a real symmetric matrix E Hallman, ICF Ipsen, AK Saibaba SIAM Journal on Matrix Analysis and Applications 44 (1), 240-269, 2023 | 8 | 2023 |
LSMB: Minimizing the backward error for least-squares problems E Hallman, M Gu SIAM Journal on Matrix Analysis and Applications 39 (3), 1295-1317, 2018 | 8 | 2018 |
Sharp 2-norm error bounds for LSQR and the conjugate gradient method E Hallman SIAM Journal on Matrix Analysis and Applications 41 (3), 1183-1207, 2020 | 7 | 2020 |
Precision-aware deterministic and probabilistic error bounds for floating point summation E Hallman, ICF Ipsen Numerische Mathematik 155 (1-2), 83-119, 2023 | 6 | 2023 |
A block bidiagonalization method for fixed-accuracy low-rank matrix approximation E Hallman SIAM Journal on Matrix Analysis and Applications 43 (2), 661-680, 2022 | 5 | 2022 |
Faster stochastic trace estimation with a Chebyshev product identity E Hallman Applied Mathematics Letters 120, 107246, 2021 | 3 | 2021 |
Deterministic and probabilistic error bounds for floating point summation algorithms E Hallman, ICF Ipsen arXiv preprint arXiv:2107.01604, 2021 | 3 | 2021 |
Error Estimates for Least-Squares Problems E Hallman University of California, Berkeley, 2019 | 2 | 2019 |
A Refined Probabilistic Error Bound for Sums E Hallman arXiv preprint arXiv:2104.06531, 2021 | 1 | 2021 |
Estimating the backward error for the least-squares problem with multiple right-hand sides E Hallman Linear Algebra and its Applications 605, 227-238, 2020 | 1 | 2020 |
A Block Bidiagonalization Method for Fixed-Precision Low-Rank Matrix Approximation. E Hallman CoRR, 2021 | | 2021 |
Sharp 2-Norm Error Bounds for the Conjugate Gradient Method and LSQR E Hallman XXI Householder Symposium on Numerical Linear Algebra, 212, 2020 | | 2020 |