关注
Eric Hallman
Eric Hallman
Postdoctoral Researcher, North Carolina State University
在 ncsu.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Randomized algorithms for rounding in the tensor-train format
H Al Daas, G Ballard, P Cazeaux, E Hallman, A Międlar, M Pasha, ...
SIAM Journal on Scientific Computing 45 (1), A74-A95, 2023
212023
Krylov-aware stochastic trace estimation
T Chen, E Hallman
SIAM Journal on Matrix Analysis and Applications 44 (3), 1218-1244, 2023
202023
A multilevel approach to stochastic trace estimation
E Hallman, D Troester
Linear Algebra and its Applications 638, 125-149, 2022
152022
Monte Carlo methods for estimating the diagonal of a real symmetric matrix
E Hallman, ICF Ipsen, AK Saibaba
SIAM Journal on Matrix Analysis and Applications 44 (1), 240-269, 2023
82023
LSMB: Minimizing the backward error for least-squares problems
E Hallman, M Gu
SIAM Journal on Matrix Analysis and Applications 39 (3), 1295-1317, 2018
82018
Sharp 2-norm error bounds for LSQR and the conjugate gradient method
E Hallman
SIAM Journal on Matrix Analysis and Applications 41 (3), 1183-1207, 2020
72020
Precision-aware deterministic and probabilistic error bounds for floating point summation
E Hallman, ICF Ipsen
Numerische Mathematik 155 (1-2), 83-119, 2023
62023
A block bidiagonalization method for fixed-accuracy low-rank matrix approximation
E Hallman
SIAM Journal on Matrix Analysis and Applications 43 (2), 661-680, 2022
52022
Faster stochastic trace estimation with a Chebyshev product identity
E Hallman
Applied Mathematics Letters 120, 107246, 2021
32021
Deterministic and probabilistic error bounds for floating point summation algorithms
E Hallman, ICF Ipsen
arXiv preprint arXiv:2107.01604, 2021
32021
Error Estimates for Least-Squares Problems
E Hallman
University of California, Berkeley, 2019
22019
A Refined Probabilistic Error Bound for Sums
E Hallman
arXiv preprint arXiv:2104.06531, 2021
12021
Estimating the backward error for the least-squares problem with multiple right-hand sides
E Hallman
Linear Algebra and its Applications 605, 227-238, 2020
12020
A Block Bidiagonalization Method for Fixed-Precision Low-Rank Matrix Approximation.
E Hallman
CoRR, 2021
2021
Sharp 2-Norm Error Bounds for the Conjugate Gradient Method and LSQR
E Hallman
XXI Householder Symposium on Numerical Linear Algebra, 212, 2020
2020
系统目前无法执行此操作,请稍后再试。
文章 1–15