Openfedllm: Training large language models on decentralized private data via federated learning R Ye, W Wang, J Chai, D Li, Z Li, Y Xu, Y Du, Y Wang, S Chen Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024 | 37 | 2024 |
Emerging Safety Attack and Defense in Federated Instruction Tuning of Large Language Models R Ye, J Chai, X Liu, Y Yang, Y Wang, S Chen arXiv preprint arXiv:2406.10630, 2024 | 5 | 2024 |
FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models R Ye, R Ge, X Zhu, J Chai, Y Du, Y Liu, Y Wang, S Chen arXiv preprint arXiv:2406.04845, 2024 | 4 | 2024 |
Leveraging Unstructured Text Data for Federated Instruction Tuning of Large Language Models R Ye, R Ge, Y Fengting, J Chai, Y Wang, S Chen arXiv preprint arXiv:2409.07136, 2024 | 2 | 2024 |
Federated learning empowered by generative content R Ye, X Zhu, J Chai, S Chen, Y Wang arXiv preprint arXiv:2312.05807, 2023 | 2 | 2023 |
Usr: Unsupervised separated 3d garment and human reconstruction via geometry and semantic consistency Y Shi, Y Xiong, J Chai, B Ni, W Zhang arXiv preprint arXiv:2302.10518, 2023 | 1 | 2023 |
Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review R Ye, X Pang, J Chai, J Chen, Z Yin, Z Xiang, X Dong, J Shao, S Chen arXiv preprint arXiv:2412.01708, 2024 | | 2024 |
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server W Wang, X Liang, R Ye, J Chai, S Chen, Y Wang arXiv preprint arXiv:2410.05725, 2024 | | 2024 |