关注
Cyriana M.A. Roelofs
Cyriana M.A. Roelofs
Fraunhofer IEE
在 iee.fraunhofer.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Autoencoder-based anomaly root cause analysis for wind turbines
CMA Roelofs, MA Lutz, S Faulstich, S Vogt
Energy and AI 4, 100065, 2021
522021
Transfer learning applications for autoencoder-based anomaly detection in wind turbines
CMA Roelofs, C Gück, S Faulstich
Energy and AI 17, 100373, 2024
22024
AI agents assessing flexibility: the value of demand side management in times of high energy prices
A Dreher, LM Martmann, M Lehna, C Roelofs, J Bergsträßer, C Scholz, ...
2022 18th International Conference on the European Energy Market (EEM), 1-9, 2022
12022
CARE to Compare: A real-world dataset for anomaly detection in wind turbine data
C Gück, C Roelofs, S Faulstich
arXiv preprint arXiv:2404.10320, 2024
2024
Transfer learning applications for anomaly detection in wind turbines
C Roelofs, C Gück, S Faulstich
arXiv preprint arXiv:2404.03011, 2024
2024
ADWENTURE-Anomaly Detection for Wind Turbine Efficiency
CMA Roelofs, C Gück, E Guevara Bastidas, F Rehwald
2024
CARE to Compare: A Real-World Benchmark Dataset for Early Fault Detection in Wind Turbine Data
C Gück, CMA Roelofs, S Faulstich
Data 9 (12), 138, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–7