关注
Sebastian Dorn
Sebastian Dorn
THA - Technical University of Applied Sciences Augsburg
在 tha.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
A2d2: Audi autonomous driving dataset
J Geyer, Y Kassahun, M Mahmudi, X Ricou, R Durgesh, AS Chung, ...
arXiv preprint arXiv:2004.06320, 2020
4442020
Center3d: Center-based monocular 3d object detection with joint depth understanding
Y Tang, S Dorn, C Savani
Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen …, 2021
462021
A2d2: Audi autonomous driving dataset. arXiv 2020
J Geyer, Y Kassahun, M Mahmudi, X Ricou, R Durgesh, AS Chung, ...
arXiv preprint arXiv:2004.06320, 2004
432004
A2D2: AEV autonomous driving dataset
J Geyer, Y Kassahun, M Mahmudi, X Ricou, R Durgesh, AS Chung, ...
arXiv preprint arXiv:2004.06320, 2019
402019
The primordial magnetic field in our cosmic backyard
S Hutschenreuter, S Dorn, J Jasche, F Vazza, D Paoletti, G Lavaux, ...
Classical and Quantum Gravity 35 (15), 154001, 2018
282018
Generic inference of inflation models by non-Gaussianity and primordial power spectrum reconstruction
S Dorn, E Ramirez, KE Kunze, S Hofmann, TA Ensslin
Journal of Cosmology and Astroparticle Physics 2014 (06), 048, 2014
152014
Cosmic expansion history from SNe Ia data via information field theory: the charm code
N Porqueres, TA Enßlin, M Greiner, V Böhm, S Dorn, P Ruiz-Lapuente, ...
Astronomy & Astrophysics 599, A92, 2017
132017
Stochastic determination of matrix determinants
S Dorn, TA Enßlin
Physical Review E 92 (1), 013302, 2015
132015
Fast and precise way to calculate the posterior for the local non-Gaussianity parameter <?format ?> from cosmic microwave background observations
S Dorn, N Oppermann, R Khatri, M Selig, TA Enßlin
Physical Review D—Particles, Fields, Gravitation, and Cosmology 88 (10), 103516, 2013
122013
Diagnostics for insufficiencies of posterior calculations in Bayesian signal inference
S Dorn, N Oppermann, TA Enßlin
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 88 (5 …, 2013
92013
Signal inference with unknown response: Calibration-uncertainty renormalized estimator
S Dorn, TA Enßlin, M Greiner, M Selig, V Boehm
Physical Review E 91 (1), 013311, 2015
82015
All-sky reconstruction of the primordial scalar potential from WMAP temperature data
S Dorn, M Greiner, TA Enßlin
Journal of Cosmology and Astroparticle Physics 2015 (02), 041, 2015
72015
Optimization and interpretability of graph attention networks for small sparse graph structures in automotive applications
M Neumeier, A Tollkühn, S Dorn, M Botsch, W Utschick
2023 IEEE Intelligent Vehicles Symposium (IV), 1-8, 2023
42023
Bayesian inference of early-universe signals
S Dorn
lmu, 2016
22016
A2D2: Audi Autonomous Driving Dataset (arXiv: 2004.06320). arXiv
J Geyer, Y Kassahun, M Mahmudi, X Ricou, R Durgesh, AS Chung, ...
22004
Prediction and Interpretation of Vehicle Trajectories in the Graph Spectral Domain
M Neumeier, S Dorn, M Botsch, W Utschick
2023 IEEE 26th International Conference on Intelligent Transportation …, 2023
12023
Gradient Derivation for Learnable Parameters in Graph Attention Networks
M Neumeier, A Tollkühn, S Dorn, M Botsch, W Utschick
arXiv preprint arXiv:2304.10939, 2023
12023
Classification and Uncertainty Quantification of Corrupted Data Using Supervised Autoencoders
P Joppich, S Dorn, O De Candido, J Knollmüller, W Utschick
Physical Sciences Forum 5 (1), 12, 2022
12022
Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models
M Neumeier, S Dorn, M Botsch, W Utschick
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
2024
Classification and Uncertainty Quantification of Corrupted Data using Semi-Supervised Autoencoders
P Joppich, S Dorn, O De Candido, W Utschick, J Knollmüller
arXiv preprint arXiv:2105.13393, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–20