关注
Artem Agafonov
Artem Agafonov
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)
在 mbzuai.ac.ae 的电子邮件经过验证
标题
引用次数
引用次数
年份
Gradient methods for problems with inexact model of the objective
FS Stonyakin, D Dvinskikh, P Dvurechensky, A Kroshnin, O Kuznetsova, ...
Mathematical Optimization Theory and Operations Research: 18th International …, 2019
582019
Inexact model: A framework for optimization and variational inequalities
F Stonyakin, A Tyurin, A Gasnikov, P Dvurechensky, A Agafonov, ...
Optimization Methods and Software 36 (6), 1155-1201, 2021
472021
An accelerated second-order method for distributed stochastic optimization
A Agafonov, P Dvurechensky, G Scutari, A Gasnikov, D Kamzolov, ...
2021 60th IEEE Conference on Decision and Control (CDC), 2407-2413, 2021
192021
Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model
F Stonyakin, A Tyurin, A Gasnikov, P Dvurechensky, A Agafonov, ...
arXiv preprint arXiv:2001.09013, 2020
192020
Inexact tensor methods and their application to stochastic convex optimization
A Agafonov, D Kamzolov, P Dvurechensky, A Gasnikov, M Takáč
Optimization Methods and Software, 1-42, 2023
172023
Inexact model: A framework for optimization and variational inequalities
F Stonyakin, A Gasnikov, A Tyurin, D Pasechnyuk, A Agafonov, ...
arXiv preprint arXiv:1902.00990, 2019
152019
Flecs: A federated learning second-order framework via compression and sketching
A Agafonov, D Kamzolov, R Tappenden, A Gasnikov, M Takáč
arXiv preprint arXiv:2206.02009, 2022
112022
Exploiting higher-order derivatives in convex optimization methods
D Kamzolov, A Gasnikov, P Dvurechensky, A Agafonov, M Takáč
arXiv preprint arXiv:2208.13190, 2022
52022
Accelerated adaptive cubic regularized quasi-newton methods
D Kamzolov, K Ziu, A Agafonov, M Takác
arXiv preprint arXiv:2302.04987, 2, 2023
42023
In Quest of Ground Truth: Learning Confident Models and Estimating Uncertainty in the Presence of Annotator Noise
AA Hashmi
32022
Advancing the lower bounds: An accelerated, stochastic, second-order method with optimal adaptation to inexactness
A Agafonov, D Kamzolov, A Gasnikov, K Antonakopoulos, V Cevher, ...
arXiv preprint arXiv:2309.01570, 2023
22023
Cubic Regularized Quasi-Newton Methods
D Kamzolov, K Ziu, A Agafonov, M Takác
arXiv preprint arXiv:2302.04987, 2023
22023
FLECS-CGD: A Federated Learning Second-Order Framework via Compression and Sketching with Compressed Gradient Differences
A Agafonov, B Erraji, M Takáč
arXiv preprint arXiv:2210.09626, 2022
22022
Cubic Regularization is the Key! The First Accelerated Quasi-Newton Method with a Global Convergence Rate of for Convex Functions
D Kamzolov, K Ziu, A Agafonov, M Takáč
arXiv preprint arXiv:2302.04987, 2023
12023
Lower bounds for conditional gradient type methods for minimizing smooth strongly convex functions
A Agafonov
arXiv preprint arXiv:2003.07073, 2020
12020
Exploring Jacobian Inexactness in Second-Order Methods for Variational Inequalities: Lower Bounds, Optimal Algorithms and Quasi-Newton Approximations
A Agafonov, P Ostroukhov, K Yakovlev, E Gorbunov, M Takáč, A Gasnikov, ...
arXiv preprint arXiv:2405.15990, 2024
2024
Нижние оценки для методов типа условного градиента для задач минимизации гладких сильно выпуклых функций
АД Агафонов
Компьютерные исследования и моделирование 14 (2), 213-223, 2022
2022
Градиентные методы для задач оптимизации, допускающие существование неточной сильно выпуклой модели целевой функции
АД Агафонов, ФС Стонякин
Труды Московского физико-технического института 11 (3 (43)), 4-19, 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–18