Promoting transparency and reproducibility in enhanced molecular simulations M Bonomi, G Bussi, C Camilloni, GA Tribello, P Banáš, A Barducci, ... Nature methods 16 (8), 670-673, 2019 | 660 | 2019 |
RNA structural dynamics as captured by molecular simulations: A comprehensive overview J Šponer, G Bussi, M Krepl, P Banáš, S Bottaro, RA Cunha, A Gil-Ley, ... Chemical reviews 118 (8), 4177-4338, 2018 | 443 | 2018 |
Biophysical experiments and biomolecular simulations: A perfect match? S Bottaro, K Lindorff-Larsen Science 361 (6400), 355-360, 2018 | 245 | 2018 |
The role of nucleobase interactions in RNA structure and dynamics S Bottaro, F Di Palma, G Bussi Nucleic acids research 42 (21), 13306-13314, 2014 | 133 | 2014 |
Integrating molecular simulation and experimental data: a Bayesian/maximum entropy reweighting approach S Bottaro, T Bengtsen, K Lindorff-Larsen Structural Bioinformatics, 219-240, 2020 | 128 | 2020 |
Computer folding of RNA tetraloops: identification of key force field deficiencies P Kührová, RB Best, S Bottaro, G Bussi, J Šponer, M Otyepka, P Banáš Journal of Chemical Theory and Computation 12 (9), 4534-4548, 2016 | 124 | 2016 |
Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations S Bottaro, G Bussi, SD Kennedy, DH Turner, K Lindorff-Larsen Science Advances 4 (5), eaar8521, 2018 | 105 | 2018 |
Potentials of mean force for protein structure prediction vindicated, formalized and generalized T Hamelryck, M Borg, M Paluszewski, J Paulsen, J Frellsen, C Andreetta, ... PloS one 5 (11), e13714, 2010 | 101 | 2010 |
Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution AH Larsen, Y Wang, S Bottaro, S Grudinin, L Arleth, K Lindorff-Larsen PLOS Computational Biology 16 (4), e1007870, 2020 | 85 | 2020 |
Free Energy Landscape of GAGA and UUCG RNA Tetraloops S Bottaro, P Banáš, J Sponer, G Bussi Journal of Physical Chemistry Letters 7 (20), 4032-4038, 2016 | 81 | 2016 |
How to learn from inconsistencies: Integrating molecular simulations with experimental data S Orioli, AH Larsen, S Bottaro, K Lindorff-Larsen Computational Approaches for Understanding Dynamical Systems: Protein …, 2020 | 75 | 2020 |
Empirical corrections to the amber RNA force field with target metadynamics A Gil-Ley, S Bottaro, G Bussi Journal of chemical theory and computation 12 (6), 2790-2798, 2016 | 65 | 2016 |
Barnaba: software for analysis of nucleic acid structures and trajectories S Bottaro, G Bussi, G Pinamonti, S Reisser, W Boomsma, ... RNA 25 (2), 219, 2019 | 57 | 2019 |
Barnaba: software for analysis of nucleic acid structures and trajectories S Bottaro, G Bussi, G Pinamonti, S Reißer, W Boomsma, K Lindorff-Larsen RNA 25 (2), 219-231, 2019 | 57 | 2019 |
Fitting corrections to an RNA force field using experimental data A Cesari, S Bottaro, K Lindorff-Larsen, P Banáš, J Šponer, G Bussi Journal of chemical theory and computation 15 (6), 3425-3431, 2019 | 51 | 2019 |
Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments G Pinamonti, S Bottaro, C Micheletti, G Bussi Nucleic Acids Research 43 (15), 7260-9, 2015 | 50 | 2015 |
Structure and dynamics of a nanodisc by integrating NMR, SAXS and SANS experiments with molecular dynamics simulations T Bengtsen, VL Holm, LR Kjølbye, SR Midtgaard, NT Johansen, G Tesei, ... eLife 9, e56518, 2020 | 49 | 2020 |
Variational optimization of an all-atom implicit solvent force field to match explicit solvent simulation data S Bottaro, K Lindorff-Larsen, RB Best Journal of chemical theory and computation 9 (12), 5641-5652, 2013 | 49 | 2013 |
PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure W Boomsma, J Frellsen, T Harder, S Bottaro, KE Johansson, P Tian, ... Journal of computational chemistry 34 (19), 1697-1705, 2013 | 48 | 2013 |
PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure W Boomsma, J Frellsen, T Harder, S Bottaro, KE Johansson, P Tian, ... Journal of computational chemistry 34 (19), 1697-1705, 2013 | 48 | 2013 |