On the numerical solution of the sine–Gordon equation: I. Integrable discretizations and homoclinic manifolds MJ Ablowitz, BM Herbst, C Schober Journal of Computational Physics 126 (2), 299-314, 1996 | 210 | 1996 |
Homoclinic chaos increases the likelihood of rogue wave formation A Calini, CM Schober Physics Letters A 298 (5-6), 335-349, 2002 | 118 | 2002 |
Geometric integrators for the nonlinear Schrödinger equation AL Islas, DA Karpeev, CM Schober Journal of computational physics 173 (1), 116-148, 2001 | 105 | 2001 |
Predicting rogue waves in random oceanic sea states AL Islas, CM Schober Physics of fluids 17 (3), 2005 | 85 | 2005 |
Modulated periodic Stokes waves in deep water MJ Ablowitz, J Hammack, D Henderson, CM Schober Physical review letters 84 (5), 887, 2000 | 85 | 2000 |
Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation DW McLaughlin, CM Schober Physica D: Nonlinear Phenomena 57 (3-4), 447-465, 1992 | 82 | 1992 |
On the numerical solution of the Sine–Gordon equation MJ Ablowitz, BM Herbst, CM Schober Journal of Computational Physics 131 (2), 354-367, 1997 | 80 | 1997 |
Numerical chaos, roundoff errors, and homoclinic manifolds MJ Ablowitz, C Schober, BM Herbst Physical review letters 71 (17), 2683, 1993 | 74 | 1993 |
On the preservation of phase space structure under multisymplectic discretization AL Islas, CM Schober Journal of Computational Physics 197 (2), 585-609, 2004 | 73 | 2004 |
Long-time dynamics of the modulational instability of deep water waves MJ Ablowitz, J Hammack, D Henderson, CM Schober Physica D: Nonlinear Phenomena 152, 416-433, 2001 | 69 | 2001 |
Mel'nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation A Calini, NM Ercolani, DW McLaughlin, CM Schober Physica D: Nonlinear Phenomena 89 (3-4), 227-260, 1996 | 61 | 1996 |
Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs AL Islas, CM Schober Mathematics and Computers in Simulation 69 (3-4), 290-303, 2005 | 56 | 2005 |
Computational chaos in the nonlinear Schrödinger equation without homoclinic crossings MJ Ablowitz, BM Herbst, CM Schober Physica A: Statistical Mechanics and its Applications 228 (1-4), 212-235, 1996 | 50 | 1996 |
Characterizing JONSWAP rogue waves and their statistics via inverse spectral data A Calini, CM Schober Wave Motion 71, 5-17, 2017 | 48 | 2017 |
Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation CM Schober Physics Letters A 259 (2), 140-151, 1999 | 45 | 1999 |
Conformal conservation laws and geometric integration for damped Hamiltonian PDEs BE Moore, L Noreña, CM Schober Journal of Computational Physics 232 (1), 214-233, 2013 | 44 | 2013 |
Dynamical criteria for rogue waves in nonlinear Schrödinger models A Calini, CM Schober Nonlinearity 25 (12), R99, 2012 | 42 | 2012 |
Multi-symplectic methods for generalized Schrödinger equations AL Islas, CM Schober Future Generation Computer Systems 19 (3), 403-413, 2003 | 40 | 2003 |
Numerical simulation of quasi-periodic solutions of the sine-Gordon equation MJ Ablowitz, BM Herbst, CM Schober Physica D: Nonlinear Phenomena 87 (1-4), 37-47, 1995 | 37 | 1995 |
Exotic dynamics in a firing rate model of neural tissue S Coombes, M Owen Proc. Res. Conf. Fluids Waves Recent Trends Appl. Anal. 440, 123, 2007 | 34 | 2007 |