Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions JA Pava, FMA Natali SIAM journal on mathematical analysis 40 (3), 1123-1151, 2008 | 105 | 2008 |
The fourth-order dispersive nonlinear Schrödinger equation: Orbital stability of a standing wave F Natali, A Pastor SIAM Journal on Applied Dynamical Systems 14 (3), 1326-1347, 2015 | 48 | 2015 |
Stability and instability of periodic travelling waves solutions for the critical Korteweg-de Vries and non-linear Schrödinger equations J Angulo, F Natali Physica D 238 (6), 603-621, 2009 | 47 | 2009 |
Orbital stability of periodic waves F Natali, A Neves IMA Journal of Applied Mathematics 79 (6), 1161-1179, 2014 | 39 | 2014 |
Stability and instability of periodic standing wave solutions for some Klein–Gordon equations FMA Natali, AP Ferreira Journal of mathematical analysis and applications 347 (2), 428-441, 2008 | 39 | 2008 |
Decay of solutions to damped Korteweg–de Vries type equation MM Cavalcanti, VN Domingos Cavalcanti, A Faminskii, F Natali Applied Mathematics & Optimization 65, 221-251, 2012 | 38 | 2012 |
Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization MM Cavalcanti, VND Cavalcanti, JA Soriano, F Natali Journal of Differential Equations 248 (12), 2955-2971, 2010 | 35 | 2010 |
Instability of H1-stable peakons in the Camassa–Holm equation F Natali, DE Pelinovsky Journal of Differential Equations 268 (12), 7342-7363, 2020 | 33 | 2020 |
On the instability of periodic waves for dispersive equations JA Pava, F Natali Differ. Integral Equ 29, 9-10, 2016 | 33 | 2016 |
Sufficient conditions for orbital stability of periodic traveling waves G Alves, F Natali, A Pastor Journal of differential equations 267 (2), 879-901, 2019 | 32 | 2019 |
New variational characterization of periodic waves in the fractional Korteweg–de Vries equation F Natali, U Le, DE Pelinovsky Nonlinearity 33 (4), 1956, 2020 | 29 | 2020 |
Exponential stability for the -D defocusing Schrödinger equation with locally distributed damping MM Cavalcanti, VN Domingos Cavalcanti, R Fukuoka, F Natali | 28 | 2009 |
A note on the stability for Kawahara–KdV type equations F Natali Applied mathematics letters 23 (5), 591-596, 2010 | 27 | 2010 |
Stability of smooth periodic travelling waves in the Camassa–Holm equation A Geyer, RH Martins, F Natali, DE Pelinovsky Studies in Applied Mathematics 148 (1), 27-61, 2022 | 25 | 2022 |
(Non) linear instability of periodic traveling waves: Klein-Gordon and KdV type equations JA Pava, F Natali Advances in Nonlinear Analysis 3 (2), 95, 2014 | 21 | 2014 |
Stability properties of periodic traveling waves for the intermediate long wave equation JA Pava, E Cardoso Jr, F Natali Revista Matemática Iberoamericana 33 (2), 417-448, 2017 | 20 | 2017 |
Periodic waves in the fractional modified Korteweg–de Vries equation F Natali, U Le, DE Pelinovsky Journal of Dynamics and Differential Equations 34 (2), 1601-1640, 2022 | 16 | 2022 |
Orbital stability of periodic traveling wave solutions for the Kawahara equation TP de Andrade, F Cristófani, F Natali Journal of Mathematical Physics 58 (5), 2017 | 16 | 2017 |
An example of non-decreasing solution for the KdV equation posed on a bounded interval GG Doronin, FM Natali Comptes Rendus. Mathématique 352 (5), 421-424, 2014 | 16 | 2014 |
Stability Properties of Periodic Standing Waves for the Klein-Gordon-Schrodinger System F Natali, A Pastor arXiv preprint arXiv:0907.2142, 2009 | 16 | 2009 |