关注
Joachim Vandekerckhove
标题
引用次数
引用次数
年份
Model Comparison and the Principle of Parsimony
J Vandekerckhove, D Matzke, EJ Wagenmakers
The Oxford Handbook of Computational and Mathematical Psychology, 300-318, 2015
4462015
Hierarchical diffusion models for two-choice response times.
J Vandekerckhove, F Tuerlinckx, MD Lee
Psychological methods 16 (1), 44, 2011
3652011
Testing theories of post-error slowing
G Dutilh, J Vandekerckhove, BU Forstmann, E Keuleers, M Brysbaert, ...
Attention, Perception, & Psychophysics 74, 454-465, 2012
3472012
A Bayesian perspective on the reproducibility project: Psychology
A Etz, J Vandekerckhove
PloS one 11 (2), e0149794, 2016
3032016
Fitting the Ratcliff diffusion model to experimental data
J Vandekerckhove, F Tuerlinckx
Psychonomic bulletin & review 14, 1011-1026, 2007
2792007
Diffusion model analysis with MATLAB: A DMAT primer
J Vandekerckhove, F Tuerlinckx
Behavior research methods 40 (1), 61-72, 2008
2702008
Introduction to Bayesian inference for psychology
A Etz, J Vandekerckhove
Psychonomic bulletin & review 25, 5-34, 2018
2332018
Meta-analyses are no substitute for registered replications: A skeptical perspective on religious priming
M Van Elk, D Matzke, Q Gronau, M Guan, J Vandekerckhove, ...
Frontiers in psychology 6, 1365, 2015
1922015
Metastudies for robust tests of theory
B Baribault, C Donkin, DR Little, JS Trueblood, Z Oravecz, ...
Proceedings of the National Academy of Sciences 115 (11), 2607-2612, 2018
1762018
Pupil-linked arousal determines variability in perceptual decision making
PR Murphy, J Vandekerckhove, S Nieuwenhuis
PLoS computational biology 10 (9), e1003854, 2014
1622014
Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example)
D Wabersich, J Vandekerckhove
Behavior research methods 46, 15-28, 2014
1562014
A diffusion model decomposition of the practice effect
G Dutilh, J Vandekerckhove, F Tuerlinckx, EJ Wagenmakers
Psychonomic Bulletin & Review 16, 1026-1036, 2009
1562009
The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models
G Dutilh, J Annis, SD Brown, P Cassey, NJ Evans, RPPP Grasman, ...
Psychonomic bulletin & review 26, 1051-1069, 2019
1552019
The case for formal methodology in scientific reform
B Devezer, DJ Navarro, J Vandekerckhove, E Ozge Buzbas
Royal Society open science 8 (3), 200805, 2021
1522021
How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters
MD Nunez, J Vandekerckhove, R Srinivasan
Journal of mathematical psychology 76, 117-130, 2017
1462017
Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task
R Wetzels, J Vandekerckhove, F Tuerlinckx, EJ Wagenmakers
Journal of Mathematical Psychology 54 (1), 14-27, 2010
1372010
A hierarchical latent stochastic differential equation model for affective dynamics.
Z Oravecz, F Tuerlinckx, J Vandekerckhove
Psychological methods 16 (4), 468, 2011
1352011
The EZ diffusion model provides a powerful test of simple empirical effects
D van Ravenzwaaij, C Donkin, J Vandekerckhove
Psychonomic bulletin & review 24, 547-556, 2017
1262017
Bayesian methods for advancing psychological science
J Vandekerckhove, JN Rouder, JK Kruschke
Psychonomic Bulletin & Review 25, 1-4, 2018
1202018
Influence of prior information on pain involves biased perceptual decision-making
K Wiech, J Vandekerckhove, J Zaman, F Tuerlinckx, JWS Vlaeyen, ...
Current Biology 24 (15), R679-R681, 2014
1192014
系统目前无法执行此操作,请稍后再试。
文章 1–20