Hepatectomy-induced alterations in hepatic perfusion and function-toward multi-scale computational modeling for a better prediction of post-hepatectomy liver function B Christ, M Collatz, U Dahmen, KH Herrmann, S Höpfl, M König, ... Frontiers in physiology 12, 733868, 2021 | 27 | 2021 |
Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism M Albadry, S Höpfl, N Ehteshamzad, M König, M Böttcher, J Neumann, ... Scientific reports 12 (1), 21825, 2022 | 11 | 2022 |
Bayesian estimation reveals that reproducible models in Systems Biology get more citations S Höpfl, J Pleiss, NE Radde Scientific Reports 13 (1), 2695, 2023 | 3 | 2023 |
Bayesian modelling of time series data (BayModTS)—a FAIR workflow to process sparse and highly variable data S Höpfl, M Albadry, U Dahmen, KH Herrmann, EM Kindler, M König, ... Bioinformatics 40 (5), btae312, 2024 | 1 | 2024 |
Eulerian Parameter Inference: A Probabilistic Change of Variables for Model-Based Inference with High-Variability Data Sets V Wagner, B Castellaz, L Kaiser, S Höpfl, N Radde | 1 | 2024 |
An inverse transformation algorithm to infer parameter distributions from population snapshot data V Wagner, S Höpfl, V Klingel, MC Pop, NE Radde IFAC-PapersOnLine 55 (23), 86-91, 2022 | 1 | 2022 |
Marginal Percentile Intervals in Bayesian Inference are Overconfident S Höpfl, HM Tautenhahn, V Wagner, NE Radde | | 2024 |
Periportale Steatose bei Mäusen beeinflusst verschiedene Parameter des perizentralen Arzneimittelstoffwechsels M Albadry, S Höpfl, N Ehteshamzad, M König, M Böttcher, J Neumann, ... Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere 51 (03), V01, 2023 | | 2023 |
Bayesian hypothesis testing reveals that reproducible models in Systems Biology get more citations S Höpfl, J Pleiss, N Radde | | 2022 |
Hepatectomy-Induced Alterations in Hepatic Perfusion and Function B Christ, N Radde, JR Reichenbach, T Ricken, HM Tautenhahn, M Collatz, ... | | 2021 |
Supplementary Information for Eulerian Parameter Inference: A Probabilistic Change of Variables for Model-Based Inference with High-Variability Data Sets V Wagner, B Castellaz, L Kaiser, S Höpfl, N Radde | | |