关注
Lin Li
Lin Li
Ph.D. student, King's College London
在 kcl.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Large ai models in health informatics: Applications, challenges, and the future
J Qiu, L Li, J Sun, J Peng, P Shi, R Zhang, Y Dong, K Lam, FPW Lo, ...
IEEE Journal of Biomedical and Health Informatics (JBHI), 2023
722023
Data augmentation alone can improve adversarial training
L Li, M Spratling
International Conference on Learning Representations (ICLR), 2023
382023
Understanding and combating robust overfitting via input loss landscape analysis and regularization
L Li, M Spratling
Pattern Recognition 136, 109229, 2023
242023
Visionfm: a multi-modal multi-task vision foundation model for generalist ophthalmic artificial intelligence
J Qiu, J Wu, H Wei, P Shi, M Zhang, Y Sun, L Li, H Liu, H Liu, S Hou, ...
arXiv preprint arXiv:2310.04992, 2023
72023
One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models
L Li, H Guan, J Qiu, M Spratling
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024
32024
OODRobustBench: benchmarking and analyzing adversarial robustness under distribution shift
L Li, Y Wang, C Sitawarin, M Spratling
International Conference on Machine Learning (ICML) 2024, ICLRW-DMLR 2024, 2024
32024
AROID: Improving Adversarial Robustness through Online Instance-wise Data Augmentation
L Li, J Qiu, M Spratling
International Journal of Computer Vision (IJCV), 2024
12024
Improved Adversarial Training Through Adaptive Instance-wise Loss Smoothing
L Li, M Spratling
arXiv preprint arXiv:2303.14077, 2023
12023
Advancing Robots with Greater Dynamic Dexterity: A Large-Scale Multi-View and Multi-Modal Dataset of Human-Human Throw&Catch of Arbitrary Objects
L Chen*, J Qiu*, L Li*, X Luo, G Chi, Y Zheng
International Journal of Robotics Research (IJRR), 2024
2024
OODRobustBench: a benchmark and large-scale analysis of adversarial robustness under distribution shift
L Li, Y Wang, C Sitawarin, M Spratling
2024
Towards Robust Visual Classification through Adversarial Training
L Li
King's College London, 2024
2024
Understanding Deep CNNs via Interpretable Individual Units
L Li
Imperial College London, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–12