Learning in the presence of concept drift and hidden contexts G Widmer, M Kubat Machine learning 23, 69-101, 1996 | 2506 | 1996 |
Incremental reduced error pruning J Fürnkranz, G Widmer Machine learning proceedings 1994, 70-77, 1994 | 585 | 1994 |
Improvements of Audio-Based Music Similarity and Genre Classificaton. E Pampalk, A Flexer, G Widmer ISMIR 5, 634-637, 2005 | 350 | 2005 |
Computational models of expressive music performance: The state of the art G Widmer, W Goebl Journal of new music research 33 (3), 203-216, 2004 | 319 | 2004 |
Madmom: A new python audio and music signal processing library S Böck, F Korzeniowski, J Schlüter, F Krebs, G Widmer Proceedings of the 24th ACM international conference on Multimedia, 1174-1178, 2016 | 313 | 2016 |
Effective learning in dynamic environments by explicit context tracking G Widmer, M Kubat Machine Learning: ECML-93: European Conference on Machine Learning Vienna …, 1993 | 262 | 1993 |
MATCH: A Music Alignment Tool Chest. S Dixon, G Widmer ISMIR, 492-497, 2005 | 236 | 2005 |
Dynamic Playlist Generation Based on Skipping Behavior. E Pampalk, T Pohle, G Widmer ISMIR 5, 634-637, 2005 | 225 | 2005 |
Exploring music collections by browsing different views E Pampalk, S Dixon, G Widmer Computer Music Journal 28 (2), 49-62, 2004 | 212 | 2004 |
Evaluating rhythmic descriptors for musical genre classification F Gouyon, S Dixon, E Pampalk, G Widmer Proceedings of the AES 25th International Conference 196, 204, 2004 | 206 | 2004 |
CP-JKU submissions for DCASE-2016: a hybrid approach using binaural i-vectors and deep convolutional neural networks H Eghbal-Zadeh, B Lehner, M Dorfer, G Widmer IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and …, 2016 | 205 | 2016 |
Towards Characterisation of Music via Rhythmic Patterns. S Dixon, F Gouyon, G Widmer ISMIR, 2004 | 204 | 2004 |
Efficient training of audio transformers with patchout K Koutini, J Schlüter, H Eghbal-Zadeh, G Widmer arXiv preprint arXiv:2110.05069, 2021 | 199 | 2021 |
Prediction of ordinal classes using regression trees S Kramer, G Widmer, B Pfahringer, M De Groeve Fundamenta Informaticae 47 (1), 1-13, 2001 | 196 | 2001 |
Tracking context changes through meta-learning G Widmer Machine learning 27, 259-286, 1997 | 192 | 1997 |
Machine discoveries: A few simple, robust local expression principles G Widmer Journal of New Music Research 31 (1), 37-50, 2002 | 190 | 2002 |
Joint Beat and Downbeat Tracking with Recurrent Neural Networks. S Böck, F Krebs, G Widmer ISMIR, 255-261, 2016 | 180 | 2016 |
Maximum filter vibrato suppression for onset detection S Böck, G Widmer Proc. of the 16th Int. Conf. on Digital Audio Effects (DAFx). Maynooth …, 2013 | 180 | 2013 |
Deep linear discriminant analysis M Dorfer, R Kelz, G Widmer arXiv preprint arXiv:1511.04707, 2015 | 170 | 2015 |
Classification of dance music by periodicity patterns S Dixon, E Pampalk, G Widmer Johns Hopkins University, 2003 | 166 | 2003 |