关注
Miles Brundage
Miles Brundage
OpenAI
在 openai.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep reinforcement learning: A brief survey
K Arulkumaran, MP Deisenroth, M Brundage, AA Bharath
IEEE Signal Processing Magazine 34 (6), 26-38, 2017
4195*2017
Gpt-4 technical report
J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ...
arXiv preprint arXiv:2303.08774, 2023
2948*2023
Evaluating large language models trained on code
M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, J Kaplan, H Edwards, ...
arXiv preprint arXiv:2107.03374, 2021
23562021
The malicious use of artificial intelligence: Forecasting, prevention, and mitigation
M Brundage, S Avin, J Clark, H Toner, P Eckersley, B Garfinkel, A Dafoe, ...
arXiv preprint arXiv:1802.07228, 2018
10742018
Release strategies and the social impacts of language models
I Solaiman, M Brundage, J Clark, A Askell, A Herbert-Voss, J Wu, ...
arXiv preprint arXiv:1908.09203, 2019
4432019
Toward trustworthy AI development: mechanisms for supporting verifiable claims
M Brundage, S Avin, J Wang, H Belfield, G Krueger, G Hadfield, H Khlaaf, ...
arXiv preprint arXiv:2004.07213, 2020
3482020
Better language models and their implications
A Radford, J Wu, D Amodei, D Amodei, J Clark, M Brundage, I Sutskever
OpenAI blog 1 (2), 2019
2652019
Understanding the capabilities, limitations, and societal impact of large language models
A Tamkin, M Brundage, J Clark, D Ganguli
arXiv preprint arXiv:2102.02503, 2021
2502021
All the news that’s fit to fabricate: AI-generated text as a tool of media misinformation
S Kreps, RM McCain, M Brundage
Journal of experimental political science 9 (1), 104-117, 2022
2272022
Limitations and risks of machine ethics
M Brundage
Journal of Experimental & Theoretical Artificial Intelligence 26 (3), 355-372, 2014
1502014
Evaluating clip: towards characterization of broader capabilities and downstream implications
S Agarwal, G Krueger, J Clark, A Radford, JW Kim, M Brundage
arXiv preprint arXiv:2108.02818, 2021
1032021
The role of cooperation in responsible AI development
A Askell, M Brundage, G Hadfield
arXiv preprint arXiv:1907.04534, 2019
702019
Frontier AI regulation: Managing emerging risks to public safety
M Anderljung, J Barnhart, J Leung, A Korinek, C O'Keefe, J Whittlestone, ...
arXiv preprint arXiv:2307.03718, 2023
582023
Taking superintelligence seriously: Superintelligence: Paths, dangers, strategies by nick bostrom (Oxford university press, 2014)
M Brundage
Futures 72, 32-35, 2015
472015
Should we fear artificial intelligence?: in-depth analysis
PJ Bentley, M Brundage, O Häggström, T Metzinger
European Parliament, 2018
412018
Smart policies for artificial intelligence
M Brundage, J Bryson
arXiv preprint arXiv:1608.08196, 2016
402016
Artificial intelligence and responsible innovation
M Brundage
Fundamental issues of artificial intelligence, 543-554, 2016
382016
Filling gaps in trustworthy development of AI
S Avin, H Belfield, M Brundage, G Krueger, J Wang, A Weller, ...
Science 374 (6573), 1327-1329, 2021
352021
Evaluating large language models trained on code. arXiv 2021
M Chen, J Tworek, H Jun, Q Yuan, HPO Pinto, J Kaplan, H Edwards, ...
arXiv preprint arXiv:2107.03374 10, 2021
352021
Accounting for the neglected dimensions of ai progress
F Martınez-Plumed, S Avin, M Brundage, A Dafoe, SO hÉigeartaigh, ...
arXiv preprint arXiv:1806.00610 19, 2018
242018
系统目前无法执行此操作,请稍后再试。
文章 1–20