Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity HK Kim, S Min, M Song, S Jung, JW Choi, Y Kim, S Lee, S Yoon, H Kim Nature biotechnology 36 (3), 239-241, 2018 | 330 | 2018 |
SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance HK Kim, Y Kim, S Lee, S Min, JY Bae, JW Choi, J Park, D Jung, S Yoon, ... Science advances 5 (11), eaax9249, 2019 | 248 | 2019 |
High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells HK Kim, S Lee, Y Kim, J Park, S Min, JW Choi, TP Huang, S Yoon, DR Liu, ... Nature biomedical engineering 4 (1), 111-124, 2020 | 122 | 2020 |
Sequence-specific prediction of the efficiencies of adenine and cytosine base editors M Song, HK Kim, S Lee, Y Kim, SY Seo, J Park, JW Choi, H Jang, JH Shin, ... Nature biotechnology 38 (9), 1037-1043, 2020 | 108 | 2020 |
High-throughput functional evaluation of human cancer-associated mutations using base editors Y Kim, S Lee, S Cho, J Park, D Chae, T Park, JD Minna, HH Kim Nature biotechnology 40 (6), 874-884, 2022 | 43 | 2022 |
Cognitive and neuroanatomical correlates in early versus late onset Parkinson’s disease dementia Y Kim, D Lee, KH Cho, JJ Lee, JH Ham, BS Ye, SK Lee, JM Lee, YH Sohn, ... Journal of Alzheimer’s Disease 55 (2), 485-495, 2016 | 6 | 2016 |
SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with unparalleled generalization performance HK Kim, Y Kim, S Lee, S Min, JY Bae, JW Choi, J Park, D Jung, S Yoon, ... bioRxiv, 636472, 2019 | 2 | 2019 |