关注
Ahmad Moeineddin
Ahmad Moeineddin
Research Associate in Computational Mechanic, TU Dresden
在 mailbox.tu-dresden.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method
S Rezaei, A Harandi, A Moeineddin, BX Xu, S Reese
Computer Methods in Applied Mechanics and Engineering 401, 115616, 2022
932022
Mixed formulation of physics‐informed neural networks for thermo‐mechanically coupled systems and heterogeneous domains
A Harandi, A Moeineddin, M Kaliske, S Reese, S Rezaei
International Journal for Numerical Methods in Engineering 125 (4), e7388, 2024
212024
Integration of physics-informed operator learning and finite element method for parametric learning of partial differential equations
S Rezaei, A Moeineddin, M Kaliske, M Apel
arXiv preprint arXiv:2401.02363, 2024
42024
Learning solutions of thermodynamics-based nonlinear constitutive material models using physics-informed neural networks
S Rezaei, A Moeineddin, A Harandi
Computational Mechanics, 1-34, 2024
32024
Physics-informed neural networks applied to catastrophic creeping landslides
A Moeineddin, C Seguí, S Dueber, R Fuentes
Landslides 20 (9), 1853-1863, 2023
12023
Learning solution of nonlinear constitutive material models using physics-informed neural networks: COMM-PINN
S Rezaei, A Moeineddin, A Harandi
arXiv preprint arXiv:2304.06044, 2023
12023
Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs
S Rezaei, RN Asl, K Taghikhani, A Moeineddin, M Kaliske, M Apel
arXiv preprint arXiv:2407.04157, 2024
2024
Phase-field fracture model solved by a mixed formulation for physics-informed neural networks
A Harandi, S Rezaei, A Moeineddin, T Brepols, S Reese
系统目前无法执行此操作,请稍后再试。
文章 1–8