On sampling from a log-concave density using kinetic Langevin diffusions AS Dalalyan, L Riou-Durand | 169 | 2020 |
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets AS Dalalyan, A Karagulyan, L Riou-Durand Journal of Machine Learning Research 23 (235), 1-38, 2022 | 47 | 2022 |
Noise contrastive estimation: Asymptotic properties, formal comparison with MC-MLE L Riou-Durand, N Chopin | 16* | 2018 |
Nested : Assessing the convergence of Markov chain Monte Carlo when running many short chains CC Margossian, MD Hoffman, P Sountsov, L Riou-Durand, A Vehtari, ... arXiv preprint arXiv:2110.13017, 2021 | 13 | 2021 |
Metropolis adjusted Langevin trajectories: a robust alternative to Hamiltonian Monte Carlo L Riou-Durand, J Vogrinc arXiv preprint arXiv:2202.13230, 2022 | 9 | 2022 |
Adaptive tuning for Metropolis adjusted Langevin trajectories L Riou-Durand, P Sountsov, J Vogrinc, C Margossian, S Power International Conference on Artificial Intelligence and Statistics, 8102-8116, 2023 | 4 | 2023 |
Theoretical contributions to Monte Carlo methods, and applications to Statistics L Riou-Durand Université Paris-Saclay, 2019 | | 2019 |
Assessing the Convergence of Markov chain Monte Carlo when running many short chains CC Margossian, MD Hoffman, P Sountsov, L Riou-Durand, A Vehtari, ... | | |
Bayesian inference using sub-posteriors. L Riou-Durand | | |