关注
Tejas Kulkarni
Tejas Kulkarni
Nokia Bell-Labs
在 nokia.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Privacy at scale: Local differential privacy in practice
G Cormode, S Jha, T Kulkarni, N Li, D Srivastava, T Wang
Proceedings of the 2018 International Conference on Management of Data, 1655 …, 2018
3472018
Marginal release under local differential privacy
G Cormode, T Kulkarni, D Srivastava
Proceedings of the 2018 International Conference on Management of Data, 131-146, 2018
1552018
Answering range queries under local differential privacy
T Kulkarni
Proceedings of the 2019 International Conference on Management of Data, 1832 …, 2019
1312019
Differentially Private Bayesian Inference for Generalized Linear Models
T Kulkarni, J Jälkö, A Koskela, S Kaski, A Honkela
arXiv preprint arXiv:2011.00467, 2020
372020
Constrained private mechanisms for count data
G Cormode, T Kulkarni, D Srivastava
IEEE Transactions on Knowledge and Data Engineering 33 (2), 415-430, 2019
18*2019
Leader Election in Sparse Dynamic Networks with Churn
SS John Augustine, Tejas Kulkarni
2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS …, 2015
12*2015
Private protocols for U-statistics in the local model and beyond
J Bell, A Bellet, A Gascón, T Kulkarni
International Conference on Artificial Intelligence and Statistics, 1573-1583, 2020
112020
Robust leader election in a fast-changing world
J Augustine, T Kulkarni, P Nakhe, P Robinson
arXiv preprint arXiv:1310.4908, 2013
112013
Practical Differentially Private Hyperparameter Tuning with Subsampling
A Koskela, K Tejas
https://arxiv.org/pdf/2301.11989.pdf, 2023
82023
Communication-Efficient Differentially Private Federated Learning Using Second-Order Information
M Krouka, A Koskela, T Kulkarni
Privacy Regulation and Protection in Machine Learning @ ICLR 2024, 2024
2024
Locally Differentially Private Bayesian Inference
SK Joonas Jälkö, Antti Honkela
arXiv preprint arXiv:2110.14426, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–11