Privacy at scale: Local differential privacy in practice G Cormode, S Jha, T Kulkarni, N Li, D Srivastava, T Wang Proceedings of the 2018 International Conference on Management of Data, 1655 …, 2018 | 347 | 2018 |
Marginal release under local differential privacy G Cormode, T Kulkarni, D Srivastava Proceedings of the 2018 International Conference on Management of Data, 131-146, 2018 | 155 | 2018 |
Answering range queries under local differential privacy T Kulkarni Proceedings of the 2019 International Conference on Management of Data, 1832 …, 2019 | 131 | 2019 |
Differentially Private Bayesian Inference for Generalized Linear Models T Kulkarni, J Jälkö, A Koskela, S Kaski, A Honkela arXiv preprint arXiv:2011.00467, 2020 | 37 | 2020 |
Constrained private mechanisms for count data G Cormode, T Kulkarni, D Srivastava IEEE Transactions on Knowledge and Data Engineering 33 (2), 415-430, 2019 | 18* | 2019 |
Leader Election in Sparse Dynamic Networks with Churn SS John Augustine, Tejas Kulkarni 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS …, 2015 | 12* | 2015 |
Private protocols for U-statistics in the local model and beyond J Bell, A Bellet, A Gascón, T Kulkarni International Conference on Artificial Intelligence and Statistics, 1573-1583, 2020 | 11 | 2020 |
Robust leader election in a fast-changing world J Augustine, T Kulkarni, P Nakhe, P Robinson arXiv preprint arXiv:1310.4908, 2013 | 11 | 2013 |
Practical Differentially Private Hyperparameter Tuning with Subsampling A Koskela, K Tejas https://arxiv.org/pdf/2301.11989.pdf, 2023 | 8 | 2023 |
Communication-Efficient Differentially Private Federated Learning Using Second-Order Information M Krouka, A Koskela, T Kulkarni Privacy Regulation and Protection in Machine Learning @ ICLR 2024, 2024 | | 2024 |
Locally Differentially Private Bayesian Inference SK Joonas Jälkö, Antti Honkela arXiv preprint arXiv:2110.14426, 2021 | | 2021 |