关注
Carolyn E. Phelan
Carolyn E. Phelan
Associate Professor of Computer Science, UCL
在 ucl.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Fluctuation identities with continuous monitoring and their application to the pricing of barrier options
CE Phelan, D Marazzina, G Fusai, G Germano
European Journal of Operational Research 271 (1), 210-223, 2018
402018
Hilbert transform, spectral filters and option pricing
CE Phelan, D Marazzina, G Fusai, G Germano
Annals of Operations Research 282 (1), 273-298, 2019
342019
Market structure dynamics during COVID-19 outbreak
PF Procacci, CE Phelan, T Aste
arXiv preprint arXiv:2003.10922, 2020
102020
Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities
CE Phelan, D Marazzina, G Germano
Quantitative Finance 20 (6), 899-918, 2020
82020
No-Arbitrage Deep Calibration for Volatility Smile and Skewness
K Hoshisashi, CE Phelan, P Barucca
arXiv preprint arXiv:2310.16703, 2023
22023
Solution of Wiener-Hopf and Fredholm integral equations by fast Hilbert and Fourier transforms
G Germano, CE Phelan, D Marazzina, G Fusai
arXiv preprint arXiv:2106.05326, 2021
22021
Whack-a-mole Online Learning: Physics-Informed Neural Network for Intraday Implied Volatility Surface
K Hoshisashi, CE Phelan, P Barucca
arXiv preprint arXiv:2411.02375, 2024
2024
Whack-a-Mole Learning: Physics-Informed Deep Calibration for Implied Volatility Surface
K Hoshisashi, CE Phelan, P Barucca
2024
The Structure and Impact of Fees on Investor and Manager Returns
M Galas, D Brown, J Bryant, L Li, C Phelan, A Rutkowska, P Treleaven
Available at SSRN 4785475, 2024
2024
Fourier transform methods for the pricing of barrier options and other exotic derivatives
CE Phelan
UCL (University College London), 2018
2018
ORCID: 0000-0001-9215-2586 and Germano, G.(2018). Hilbert transform, spectral filters and option pricing
CE Phelan, D Marazzina, G Fusai
Annals of Operations Research, doi 10, 0
Improvement of numerical option pricing methods based on the Hilbert transform using spectral filtering
CE Phelan, G Germano
Physics-Informed Neural Networks for Derivative-Constrained PDEs
K Hoshisashi, CE Phelan, P Barucca
ICML 2024 AI for Science Workshop, 0
系统目前无法执行此操作,请稍后再试。
文章 1–13