关注
Georg H. Erharter
标题
引用次数
引用次数
年份
On the pointlessness of machine learning based time delayed prediction of TBM operational data
GH Erharter, T Marcher
Automation in Construction 121, 103443, 2021
382021
Artificial neural network based online rockmass behavior classification of TBM data
GH Erharter, T Marcher, C Reinhold
Information Technology in Geo-Engineering: Proceedings of the 3rd …, 2020
382020
MSAC: Towards data driven system behavior classification for TBM tunneling
GH Erharter, T Marcher
Tunnelling and Underground Space Technology 103, 103466, 2020
372020
Machine Learning in tunnelling–Capabilities and challenges
T Marcher, GH Erharter, M Winkler
Geomechanics and Tunnelling 13 (2), 191-198, 2020
332020
Reinforcement learning based process optimization and strategy development in conventional tunneling
GH Erharter, TF Hansen, Z Liu, T Marcher
Automation in Construction 127, 103701, 2021
322021
Application of artificial neural networks for Underground construction–Chances and challenges–Insights from the BBT exploratory tunnel Ahrental Pfons
GH Erharter, T Marcher, C Reinhold
Geomechanics and Tunnelling 12 (5), 472-477, 2019
312019
Comparison of artificial neural networks for TBM data classification
GH Erharter, T Marcher, C Reinhold
ISRM Congress, ISRM-14CONGRESS-2019-293, 2019
192019
Learning decision boundaries for cone penetration test classification
GH Erharter, S Oberhollenzer, A Fankhauser, R Marte, T Marcher
Computer‐Aided Civil and Infrastructure Engineering 36 (4), 489-503, 2021
162021
Cone penetration test dataset Premstaller Geotechnik
S Oberhollenzer, M Premstaller, R Marte, F Tschuchnigg, GH Erharter, ...
Data in Brief 34, 106618, 2021
152021
Building information modelling based ground modelling for tunnel projects–Tunnel Angath/Austria
GH Erharter, J Weil, L Bacher, F Heil, P Kompolschek
Tunnelling and Underground Space Technology 135, 105039, 2023
102023
On the effect of shield friction in hard rock TBM excavation
GH Erharter, R Goliasch, T Marcher
Rock Mechanics and Rock Engineering 56 (4), 3077-3092, 2023
102023
Machine learning–an approach for consistent rock glacier mapping and inventorying–example of Austria
GH Erharter, T Wagner, G Winkler, T Marcher
Applied Computing and Geosciences 16, 100093, 2022
72022
Stochastic 3D modelling of discrete sediment bodies for geotechnical applications
GH Erharter, F Tschuchnigg, G Poscher
Applied Computing and Geosciences 11, 100066, 2021
72021
A new parameter for TBM data analysis based on the experience of the Brenner Base Tunnel excavation
G Heikal, GH Erharter, T Marcher
IOP Conference Series: Earth and Environmental Science 833 (1), 012158, 2021
62021
Improving face decisions in tunnelling by machine learning‐based MWD analysis
TF Hansen, GH Erharter, T Marcher, Z Liu, J Tørresen
Geomechanics and Tunnelling 15 (2), 222-231, 2022
52022
A 2023 perspective on Rock Mass Classification Systems
GH Erharter, TF Hansen, S Qi, N Bar, T Marcher
15th ISRM Congress 2023 & 72nd Geomechanics Colloquium, 758-763, 2023
42023
Practical recommendations for machine learning in underground rock engineering–On algorithm development, data balancing, and input variable selection
J Morgenroth, PJ Unterlaß, A Sapronova, UT Khan, MA Perras, ...
Geomechanics and Tunnelling 15 (5), 650-657, 2022
42022
Capabilities and challenges using machine learning in tunnelling
T Marcher, G Erharter, P Unterlass
IntechOpen, 2021
42021
Geotechnical characteristics of soft rocks of the Inneralpine Molasse–Brenner Base Tunnel access route, Unterangerberg, Tyrol, Austria
GH Erharter, G Poscher, P Sommer, C Sedlacek
Geomechanics and Tunnelling 12 (6), 716-720, 2019
42019
Virtual reality based uncertainty assessment of rock mass characterization of tunnel faces
E Skretting, GH Erharter, JKY Chiu
15th ISRM Congress 2023 & 72nd Geomechanics Colloquium, 888-893, 2023
32023
系统目前无法执行此操作,请稍后再试。
文章 1–20