关注
Predrag Matavulj
Predrag Matavulj
Postdoctoral Researcher @I4DS
在 fhnw.ch 的电子邮件经过验证
标题
引用次数
引用次数
年份
Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps
I Šaulienė, L Šukienė, G Daunys, G Valiulis, L Vaitkevičius, P Matavulj, ...
Atmospheric Measurement Techniques 12 (6), 3435-3452, 2019
1032019
RealForAll: real-time system for automatic detection of airborne pollen
D Tešendić, D Boberić Krstićev, P Matavulj, S Brdar, M Panić, V Minić, ...
Enterprise Information Systems 16 (5), 1793391, 2022
352022
Towards European automatic bioaerosol monitoring: comparison of 9 automatic pollen observational instruments with classic Hirst-type traps
JM Maya-Manzano, F Tummon, R Abt, N Allan, L Bunderson, B Clot, ...
Science of the Total Environment 866, 161220, 2023
242023
Why should we care about high temporal resolution monitoring of bioaerosols in ambient air?
M Smith, P Matavulj, G Mimić, M Panić, Ł Grewling, B Šikoparija
Science of the Total Environment 826, 154231, 2022
142022
Integration of reference data from different Rapid-E devices supports automatic pollen detection in more locations
P Matavulj, A Cristofori, F Cristofolini, E Gottardini, S Brdar, B Sikoparija
Science of The Total Environment 851, 158234, 2022
82022
Real-time automatic detection of starch particles in ambient air
B Šikoparija, P Matavulj, G Mimić, M Smith, Ł Grewling, Z Podraščanin
Agricultural and Forest Meteorology 323, 109034, 2022
82022
Advanced CNN architectures for pollen classification: Design and comprehensive evaluation
P Matavulj, M Panić, B Šikoparija, D Tešendić, M Radovanović, S Brdar
Applied Artificial Intelligence 37 (1), 2157593, 2023
62023
Do we need continuous sampling to capture variability of hourly pollen concentrations?
B Sikoparija, G Mimić, P Matavulj, M Panić, I Simović, S Brdar
Aerobiologia 36, 3-7, 2020
62020
Domain adaptation with unlabeled data for model transferability between airborne particle identifiers
P Matavulj, S Brdar, M Racković, B Šikoparija, IN Athanasiadis
17th International Conference on Machine Learning and Data Mining MLDM 2021 …, 2021
52021
Manual and automatic quantification of airborne fungal spores during wheat harvest period
I Simović, P Matavulj, B Šikoparija
Aerobiologia 39 (2), 227-239, 2023
32023
Interseasonal transfer learning for crop mapping using Sentinel-1 data
M Pandžić, D Pavlović, P Matavulj, S Brdar, O Marko, V Crnojević, ...
International Journal of Applied Earth Observation and Geoinformation 128 …, 2024
12024
Explainable AI for unveiling deep learning pollen classification model based on fusion of scattered light patterns and fluorescence spectroscopy
S Brdar, M Panić, P Matavulj, M Stanković, D Bartolić, B Šikoparija
Scientific Reports 13 (1), 3205, 2023
12023
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
B Sikoparija, P Matavulj, I Simovic, P Radisic, S Brdar, V Minic, ...
EGUsphere 2024, 1-36, 2024
2024
Integration of data from different rapid e-devices supports pollen classification in more locations
P Matavulj, A Cristofori, F Cristofolini, E Gottardini, S Brdar, B Sikoparija
One health Paestum 2022: 5th MedPalyos Symposium. 16th AIA Congress (Italian …, 2022
2022
High temporal resolution monitoring of Ambrosia pollen in ambient air
L Grewling, P Matavulj, G Mimić, M Panić, M Smith, B Šikoparija
2022
Detection of starch rain in ambient air of Novi Sad, Serbia
B Šikoparija, P Matavulj, G Mimić, M Smith, L Grewling, Z Podraščanin
2021
Multi-modal architecture based on machine learning for real-time pollen classification
D Tešendić, S Brdar, P Matavulj
系统目前无法执行此操作,请稍后再试。
文章 1–17