关注
Sunghwan Joo
Sunghwan Joo
在 skku.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Fooling neural network interpretations via adversarial model manipulation
J Heo, S Joo, T Moon
Advances in neural information processing systems 32, 2019
2252019
Subtask gated networks for non-intrusive load monitoring
C Shin, S Joo, J Yim, H Lee, T Moon, W Rhee
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 1150-1157, 2019
1192019
Swift: Swin 4d fmri transformer
P Kim, J Kwon, S Joo, S Bae, D Lee, Y Jung, S Yoo, J Cha, T Moon
Advances in Neural Information Processing Systems 36, 42015-42037, 2023
72023
DoPAMINE: Double-sided masked CNN for pixel adaptive multiplicative noise despeckling
S Joo, S Cha, T Moon
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 4031-4038, 2019
62019
Towards more robust interpretation via local gradient alignment
S Joo, S Jeong, J Heo, A Weller, T Moon
Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8168-8176, 2023
42023
SwiFT: Swin 4D fMRI Transformer
P Yongho Kim, J Kwon, S Joo, S Bae, D Lee, Y Jung, S Yoo, J Cha, ...
arXiv e-prints, arXiv: 2307.05916, 2023
2023
Supplementary Material for Fooling Neural Network Interpretations via Adversarial Model Manipulation
J Heo, S Joo, T Moon
系统目前无法执行此操作,请稍后再试。
文章 1–7