Automated termination analysis of polynomial probabilistic programs M Moosbrugger, E Bartocci, JP Katoen, L Kovács European Symposium on Programming, 491-518, 2021 | 33 | 2021 |
This is the moment for probabilistic loops M Moosbrugger, M Stankovič, E Bartocci, L Kovács Proceedings of the ACM on Programming Languages 6 (OOPSLA2), 1497-1525, 2022 | 23 | 2022 |
Solving invariant generation for unsolvable loops D Amrollahi, E Bartocci, G Kenison, L Kovács, M Moosbrugger, ... International Static Analysis Symposium, 19-43, 2022 | 18 | 2022 |
The probabilistic termination tool amber M Moosbrugger, E Bartocci, JP Katoen, L Kovács International Symposium on Formal Methods, 667-675, 2021 | 10 | 2021 |
Moment-based invariants for probabilistic loops with non-polynomial assignments A Kofnov, M Moosbrugger, M Stankovič, E Bartocci, E Bura International Conference on Quantitative Evaluation of Systems, 3-25, 2022 | 9 | 2022 |
Distribution estimation for probabilistic loops A Karimi, M Moosbrugger, M Stankovič, L Kovács, E Bartocci, E Bura International Conference on Quantitative Evaluation of Systems, 26-42, 2022 | 6 | 2022 |
Exact and Approximate Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments A Kofnov, M Moosbrugger, M Stankovič, E Bartocci, E Bura ACM Transactions on Modeling and Computer Simulation, 2024 | 4 | 2024 |
(Un) Solvable loop analysis D Amrollahi, E Bartocci, G Kenison, L Kovács, M Moosbrugger, ... Formal Methods in System Design, 1-32, 2024 | 2 | 2024 |
Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs J Müllner, M Moosbrugger, L Kovács Proceedings of the ACM on Programming Languages 8 (POPL), 882-910, 2024 | 1 | 2024 |
Automated Analysis of Probabilistic Loops M Moosbrugger Technische Universität Wien, 2024 | | 2024 |
Automated Sensitivity Analysis for Probabilistic Loops M Moosbrugger, J Müllner, L Kovács International Conference on Integrated Formal Methods, 21-39, 2023 | | 2023 |
Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs J Müllner, M Moosbrugger, L Kovács arXiv preprint arXiv:2307.10902, 2023 | | 2023 |
Automating termination analysis of probabilistic programs M Moosbrugger Wien, 2020 | | 2020 |