关注
Timothy A Mann
标题
引用次数
引用次数
年份
Deep reinforcement learning in large discrete action spaces
G Dulac-Arnold, R Evans, H van Hasselt, P Sunehag, T Lillicrap, J Hunt, ...
arXiv preprint arXiv:1512.07679, 2015
6962015
On the effectiveness of interval bound propagation for training verifiably robust models
S Gowal, K Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
arXiv preprint arXiv:1810.12715, 2018
4922018
A Dual Approach to Scalable Verification of Deep Networks.
K Dvijotham, R Stanforth, S Gowal, TA Mann, P Kohli
UAI 1 (2), 3, 2018
4472018
Uncovering the limits of adversarial training against norm-bounded adversarial examples
S Gowal, C Qin, J Uesato, T Mann, P Kohli
arXiv preprint arXiv:2010.03593, 2020
3052020
Fixing data augmentation to improve adversarial robustness
SA Rebuffi, S Gowal, DA Calian, F Stimberg, O Wiles, T Mann
arXiv preprint arXiv:2103.01946, 2021
2482021
Data augmentation can improve robustness
SA Rebuffi, S Gowal, DA Calian, F Stimberg, O Wiles, TA Mann
Advances in Neural Information Processing Systems 34, 29935-29948, 2021
2422021
Improving robustness using generated data
S Gowal, SA Rebuffi, O Wiles, F Stimberg, DA Calian, TA Mann
Advances in Neural Information Processing Systems 34, 4218-4233, 2021
2292021
Scalable verified training for provably robust image classification
S Gowal, KD Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1712019
Robust reinforcement learning for continuous control with model misspecification
DJ Mankowitz, N Levine, R Jeong, Y Shi, J Kay, A Abdolmaleki, ...
arXiv preprint arXiv:1906.07516, 2019
1162019
An alternative surrogate loss for pgd-based adversarial testing
S Gowal, J Uesato, C Qin, PS Huang, T Mann, P Kohli
arXiv preprint arXiv:1910.09338, 2019
792019
Adaptive skills adaptive partitions (ASAP)
DJ Mankowitz, TA Mann, S Mannor
Advances in neural information processing systems 29, 2016
712016
Approximate Value Iteration with Temporally Extended Actions
SMDP Timothy A. Mann
Journal of Artificial Intelligence Research 53, 375-438, 2015
662015
Scaling up approximate value iteration with options: Better policies with fewer iterations
T Mann, S Mannor
International conference on machine learning, 127-135, 2014
632014
Achieving robustness in the wild via adversarial mixing with disentangled representations
S Gowal, C Qin, PS Huang, T Cemgil, K Dvijotham, T Mann, P Kohli
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
612020
How hard is my MDP?" The distribution-norm to the rescue"
OA Maillard, TA Mann, S Mannor
Advances in Neural Information Processing Systems 27, 2014
602014
Soft-robust actor-critic policy-gradient
E Derman, DJ Mankowitz, TA Mann, S Mannor
arXiv preprint arXiv:1803.04848, 2018
592018
A bayesian approach to robust reinforcement learning
E Derman, D Mankowitz, T Mann, S Mannor
Uncertainty in Artificial Intelligence, 648-658, 2020
492020
Defending against image corruptions through adversarial augmentations
DA Calian, F Stimberg, O Wiles, SA Rebuffi, A Gyorgy, T Mann, S Gowal
arXiv preprint arXiv:2104.01086, 2021
472021
Learning robust options
D Mankowitz, T Mann, PL Bacon, D Precup, S Mannor
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
452018
Time regularized interrupting options
DJ Mankowitz, TA Mann, S Mannor
Internation Conference on Machine Learning, 2014
42*2014
系统目前无法执行此操作,请稍后再试。
文章 1–20