Value functions for depth-limited solving in imperfect-information games beyond poker D Seitz, V Kovařík, V Lisý, J Rudolf, S Sun, K Ha arXiv e-prints, arXiv: 1906.06412, 2019 | 13 | 2019 |
Value functions for depth-limited solving in zero-sum imperfect-information games V Kovařík, D Seitz, V Lisý, J Rudolf, S Sun, K Ha Artificial Intelligence 314, 103805, 2023 | 10 | 2023 |
Value functions for depth-limited solving in imperfect-information games V Kovarık, D Seitz, V Lisy, J Rudolf, S Sun, K Ha AAAI Reinforcement Learning in Games Workshop 132, 133-138, 2021 | 8 | 2021 |
Learning to guess opponent’s information in large partially observable games D Seitz, N Milyukov, V Lisý Proc. AAAI Workshop Reinforcement Learning in Games, 2021 | 5 | 2021 |
Qadence: a differentiable interface for digital-analog programs D Seitz, N Heim, JP Moutinho, R Guichard, V Abramavicius, ... arXiv preprint arXiv:2401.09915, 2024 | 3 | 2024 |
Fast algorithms for poker require modelling it as a sequential Bayesian game V Kovařík, D Milec, M Šustr, D Seitz, V Lisý arXiv preprint ArXiv:2112.10890, 2021 | 2 | 2021 |
Revisiting Game Representations: The Hidden Costs of Efficiency in Sequential Decision-making Algorithms V Kovařík, D Milec, M Šustr, D Seitz, V Lisý arXiv preprint arXiv:2112.10890, 2021 | | 2021 |
Revisiting Game Representations: The Hidden Costs of Efficiency in Sequential V Kovařík, D Milec, M Šustr, D Seitz, V Lisý Available at SSRN 4690803, 0 | | |