Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media K Gao, S Fu, RL Gibson Jr, ET Chung, Y Efendiev Journal of Computational Physics 295, 161-188, 2015 | 92 | 2015 |
Generalized multiscale finite element method for elasticity equations ET Chung, Y Efendiev, S Fu GEM-International Journal on Geomathematics 5, 225-254, 2014 | 76 | 2014 |
A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory K Gao, ET Chung, RL Gibson Jr, S Fu, Y Efendiev Geophysics 80 (4), D385-D401, 2015 | 38 | 2015 |
A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method S Fu, K Gao Geophysical Journal International 211 (2), 797-813, 2017 | 35 | 2017 |
Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity S Fu, E Chung, T Mai Journal of Computational Physics 417, 109569, 2020 | 30 | 2020 |
A high-order multiscale finite-element method for time-domain acoustic-wave modeling K Gao, S Fu, ET Chung Journal of Computational Physics 360, 120-136, 2018 | 28 | 2018 |
An enriched multiscale mortar space for high contrast flow problems. Y Yang, ET Chung, S Fu Communication in Comput. Phys 23 (2), 476-499, 2018 | 28* | 2018 |
Generalized multiscale finite element method for a strain-limiting nonlinear elasticity model S Fu, E Chung, T Mai Journal of Computational and Applied Mathematics 359, 153-165, 2019 | 27 | 2019 |
Edge multiscale methods for elliptic problems with heterogeneous coefficients S Fu, E Chung, G Li Journal of Computational Physics 396, 228-242, 2019 | 24 | 2019 |
Computational multiscale methods for linear poroelasticity with high contrast S Fu, R Altmann, ET Chung, R Maier, D Peterseim, SM Pun Journal of Computational Physics 395, 286-297, 2019 | 23 | 2019 |
Wavelet-based edge multiscale finite element method for Helmholtz problems in perforated domains S Fu, G Li, R Craster, S Guenneau Multiscale Modeling & Simulation 19 (4), 1684-1709, 2021 | 21 | 2021 |
An efficient and statistically accurate Lagrangian data assimilation algorithm with applications to discrete element sea ice models N Chen, S Fu, GE Manucharyan Journal of Computational Physics 455, 111000, 2022 | 15 | 2022 |
An Efficient Multiscale Finite‐Element Method for Frequency‐Domain Seismic Wave Propagation K Gao, S Fu, ET Chung Bulletin of the Seismological Society of America 108 (2), 966-982, 2018 | 15 | 2018 |
A local-global multiscale mortar mixed finite element method for multiphase transport in heterogeneous media S Fu, ET Chung Journal of Computational Physics 399, 108906, 2019 | 14 | 2019 |
Multiscale modeling of acoustic wave propagation in 2D heterogeneous media using local spectral basis functions S Fu, Y Efendiev, K Gao, RL Gibson Jr SEG International Exposition and Annual Meeting, SEG-2013-1184, 2013 | 13 | 2013 |
Constraint energy minimizing generalized multiscale finite element method for high-contrast linear elasticity problem S Fu, ET Chung Communication in Computational Physics 27 (3), 809-827, 2020 | 11 | 2020 |
An Edge Multiscale Interior Penalty Discontinuous Galerkin method for heterogeneous Helmholtz problems with large varying wavenumber S Fu, ET Chung, G Li Journal of Computational Physics 441, 110387, 2021 | 10 | 2021 |
Online mixed multiscale finite element method with oversampling and its applications Y Yang, S Fu, ET Chung Journal of Scientific Computing 82 (2), 31, 2020 | 10 | 2020 |
Reverse time migration based on generalized multiscale finite element forward modeling RL Gibson Jr, S Fu SEG International Exposition and Annual Meeting, SEG-2015-5922287, 2015 | 10 | 2015 |
A comparison of mixed multiscale finite element methods for multiphase transport in highly heterogeneous media Y Wang, E Chung, S Fu, Z Huang Water Resources Research 57 (5), e2020WR028877, 2021 | 9 | 2021 |