Machine learning in production–potentials, challenges and exemplary applications A Mayr, D Kißkalt, M Meiners, B Lutz, F Schäfer, R Seidel, A Selmaier, ... Procedia CIRP 86, 49-54, 2019 | 83 | 2019 |
Evaluation of machine learning for quality monitoring of laser welding using the example of the contacting of hairpin windings A Mayr, B Lutz, M Weigelt, T Gläßel, D Kißkalt, M Masuch, A Riedel, ... 2018 8th International Electric Drives Production Conference (EDPC), 1-7, 2018 | 57 | 2018 |
Evaluation of deep learning for semantic image segmentation in tool condition monitoring B Lutz, D Kisskalt, D Regulin, R Reisch, A Schiffler, J Franke 2019 18th IEEE international conference on machine learning and applications …, 2019 | 28 | 2019 |
Distributed condition monitoring systems in electric drives manufacturing H Fleischmann, S Spreng, J Kohl, D Kisskalt, J Franke 2016 6th international electric drives production conference (EDPC), 52-57, 2016 | 24 | 2016 |
Streamlining the development of data-driven industrial applications by automated machine learning D Kißkalt, A Mayr, B Lutz, A Rögele, J Franke Procedia CIRP 93, 401-406, 2020 | 18 | 2020 |
A novel approach for data-driven process and condition monitoring systems on the example of mill-turn centers D Kißkalt, H Fleischmann, S Kreitlein, M Knott, J Franke Production Engineering 12, 525-533, 2018 | 18 | 2018 |
Towards an intelligent linear winding process through sensor integration and machine learning techniques A Mayr, D Kißkalt, A Lomakin, K Graichen, J Franke Procedia CIRP 96, 80-85, 2021 | 15 | 2021 |
Multi-agent reinforcement learning for the energy optimization of cyber-physical production systems J Bakakeu, S Baer, HH Klos, J Peschke, M Brossog, J Franke Artificial Intelligence in Industry 4.0: A Collection of Innovative Research …, 2021 | 15 | 2021 |
Towards a data-driven process monitoring for machining operations using the example of electric drive production D Kißkalt, A Mayr, J von Lindenfels, J Franke 2018 8th International electric drives production conference (EDPC), 1-6, 2018 | 14 | 2018 |
Towards a smart electronics production using machine learning techniques R Seidel, A Mayr, F Schäfer, D Kißkalt, J Franke 2019 42nd international spring seminar on electronics technology (isse), 1-6, 2019 | 13 | 2019 |
In-situ identification of material batches using machine learning for machining operations B Lutz, D Kisskalt, A Mayr, D Regulin, M Pantano, J Franke Journal of Intelligent Manufacturing 32, 1485-1495, 2021 | 12 | 2021 |
Towards “design for interoperability” in the context of systems engineering M Sjarov, D Kißkalt, T Lechler, A Selmaier, J Franke Procedia CIRP 96, 145-150, 2021 | 12 | 2021 |
Benchmark of automated machine learning with state-of-the-art image segmentation algorithms for tool condition monitoring B Lutz, R Reisch, D Kisskalt, B Avci, D Regulin, A Knoll, J Franke Procedia Manufacturing 51, 215-221, 2020 | 12 | 2020 |
Machine learning in electric motor production-potentials, challenges and exemplary applications A Mayr, J Seefried, M Ziegler, M Masuch, A Mahr, J Lindenfels, M Meiners, ... 2019 9th international electric drives production conference (EDPC), 1-10, 2019 | 9 | 2019 |
Artificial Intelligence-Based Assistance System for Visual Inspection of X-ray Scatter Grids A Selmaier, D Kunz, D Kisskalt, M Benaziz, J Fürst, J Franke Sensors 22 (3), 811, 2022 | 4 | 2022 |
Automated domain adaptation in tool condition monitoring using generative adversarial networks B Lutz, D Kisskalt, D Regulin, B Aybar, J Franke 2021 IEEE 17th International Conference on Automation Science and …, 2021 | 4 | 2021 |
Ai-based approach for predicting the machinability under consideration of material batch deviations in turning processes B Lutz, D Kisskalt, D Regulin, J Franke Procedia CIRP 93, 1382-1387, 2020 | 4 | 2020 |
Material Identification for Smart Manufacturing Systems: A Review B Lutz, D Kisskalt, D Regulin, T Hauser, J Franke 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems …, 2021 | 3 | 2021 |
Elektromotorenproduktion 4.0 A Mayr, B Lutz, M Weigelt, T Gläßel, J Seefried, D Kißkalt, J Franke Zeitschrift für wirtschaftlichen Fabrikbetrieb 114 (3), 145-149, 2019 | 3 | 2019 |
Interactive image segmentation using superpixels and deep metric learning for tool condition monitoring B Lutz, L Janisch, D Kisskalt, D Regulin, J Franke Procedia CIRP 118, 459-464, 2023 | 2 | 2023 |