On over-squashing in message passing neural networks: The impact of width, depth, and topology F Di Giovanni, L Giusti, F Barbero, G Luise, P Lio, M Bronstein Proceedings of the 40th International Conference on Machine Learning (ICML 2023), 2023 | 87* | 2023 |
Transcending transcend: Revisiting malware classification with conformal evaluation F Barbero, F Pendlebury, F Pierazzi, L Cavallaro 2022 IEEE Symposium on Security and Privacy, 1332-1349, 2022 | 68* | 2022 |
Sheaf neural networks with connection laplacians F Barbero, C Bodnar, HS de Ocáriz Borde, M Bronstein, P Veličković, ... Topological, Algebraic and Geometric Learning Workshops 2022, 28-36, 2022 | 33 | 2022 |
Sheaf attention networks F Barbero, C Bodnar, HS de Ocáriz Borde, P Lio NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022 | 18 | 2022 |
Latent Graph Inference using Product Manifolds HS de Ocáriz Borde, A Kazi, F Barbero, P Lio International Conference on Learning Representations (ICLR 2023), 2023 | 16* | 2023 |
Locality-Aware Graph-Rewiring in GNNs F Barbero, A Velingker, A Saberi, M Bronstein, F Di Giovanni arXiv preprint arXiv:2310.01668, 2023 | 8 | 2023 |
Graph Neural Network Expressivity and Meta-Learning for Molecular Property Regression HS de Ocáriz Borde, F Barbero The First Learning on Graphs Conference, 2022 | 2 | 2022 |
Transformers need glasses! Information over-squashing in language tasks F Barbero, A Banino, S Kapturowski, D Kumaran, JGM Araújo, A Vitvitskyi, ... arXiv preprint arXiv:2406.04267, 2024 | | 2024 |
Bundle Neural Networks for message diffusion on graphs J Bamberger, F Barbero, X Dong, M Bronstein arXiv preprint arXiv:2405.15540, 2024 | | 2024 |
Attention-based Sheaf Neural Networks F Barbero | | |