A probabilistic approach to WLAN user location estimation T Roos, P Myllymäki, H Tirri, P Misikangas, J Sievänen International Journal of Wireless Information Networks 9, 155-164, 2002 | 1340 | 2002 |
A statistical modeling approach to location estimation T Roos, P Myllymaki, H Tirri IEEE Transactions on Mobile Computing 1 (1), 59-69, 2002 | 476 | 2002 |
Location estimation in wireless telecommunication networks P Myllymäki, H Tirri, P Kontkanen, J Lahtinen, T Silander, T Roos, ... US Patent 7,228,136, 2007 | 368 | 2007 |
On discriminative Bayesian network classifiers and logistic regression T Roos, H Wettig, P Grünwald, P Myllymäki, H Tirri Machine Learning 59, 267-296, 2005 | 165 | 2005 |
User-generated free-form gestures for authentication: Security and memorability M Sherman, G Clark, Y Yang, S Sugrim, A Modig, J Lindqvist, A Oulasvirta, ... 12th Annual International Conference on Mobile Systems, Applications, and …, 2014 | 144 | 2014 |
Topics in probabilistic location estimation in wireless networks P Kontkanen, P Myllymaki, T Roos, H Tirri, K Valtonen, H Wettig 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio …, 2004 | 121 | 2004 |
Error estimate concerning a target device's location operable to move in a wireless environment P Myllymäki, P Kontkanen, T Roos, K Valtonen, J Lahtinen, H Wettig, ... US Patent 7,209,752, 2007 | 109 | 2007 |
Semi-supervised learning for WLAN positioning T Pulkkinen, T Roos, P Myllymäki 21st International Conference on Artificial Neural Networks (ICANN-2011 …, 2011 | 92 | 2011 |
Evaluating methods for computer-assisted stemmatology using artificial benchmark data sets T Roos, T Heikkilä Literary and Linguistic Computing 24 (4), 417-433, 2009 | 87 | 2009 |
Minimum description length revisited P Grünwald, T Roos International Journal of Mathematics for Industry, 2020 | 77 | 2020 |
Factorized normalized maximum likelihood criterion for learning Bayesian network structures T Silander, T Roos, P Kontkanen, P Myllymäki 4th European Workshop on Probabilistic Graphical Models (PGM-08), 257-272, 2008 | 75 | 2008 |
Discriminative learning of Bayesian networks via factorized conditional log-likelihood AM Carvalho, T Roos, AL Oliveira, P Myllymäki Journal of Machine Learning Research 12 (Jul), 2181-2210, 2011 | 72 | 2011 |
On sequentially normalized maximum likelihood models T Roos, J Rissanen 1st Workshop on Information Theoretic Methods in Science and Engineering …, 2008 | 66 | 2008 |
Fast nearest neighbor search through sparse random projections and voting V Hyvönen, T Pitkänen, S Tasoulis, E Jääsaari, R Tuomainen, L Wang, ... 2016 IEEE International Conference on Big Data, 881-888, 2016 | 65* | 2016 |
MDL denoising revisited T Roos, P Myllymaki, J Rissanen IEEE Transactions on Signal Processing 57 (9), 3347-3360, 2009 | 62 | 2009 |
Conditional NML universal models J Rissanen, T Roos 2007 Information Theory and Applications Workshop, 337-341, 2007 | 53 | 2007 |
Learning locally minimax optimal Bayesian networks T Silander, T Roos, P Myllymäki International Journal of Approximate Reasoning 51 (5), 544-557, 2010 | 52 | 2010 |
Bayesian network structure learning using factorized NML universal models T Roos, T Silander, P Kontkanen, P Myllymaki 2008 Information Theory and Applications Workshop, 272-276, 2008 | 48 | 2008 |
An application of storage-optimal MatDot codes for coded matrix multiplication: Fast k-nearest neighbors estimation U Sheth, S Dutta, M Chaudhari, H Jeong, Y Yang, J Kohonen, T Roos, ... 2018 IEEE International Conference on Big Data, 1113-1120, 2018 | 44 | 2018 |
Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data R Eggeling, T Roos, P Myllymäki, I Grosse BMC Bioinformatics 16 (1), 1-15, 2015 | 44 | 2015 |