Categorified symplectic geometry and the classical string JC Baez, AE Hoffnung, CL Rogers Communications in Mathematical Physics 293 (3), 701, 2010 | 124 | 2010 |
L∞-algebras from multisymplectic geometry CL Rogers Letters in Mathematical Physics, 1-22, 2011 | 96 | 2011 |
Categorified symplectic geometry and the string Lie 2-algebra JC Baez, CL Rogers Homology, Homotopy and Applications 12 (1), 221-236, 2010 | 68 | 2010 |
A version of the Goldman–Millson theorem for filtered L∞-algebras VA Dolgushev, CL Rogers Journal of Algebra 430, 260-302, 2015 | 66 | 2015 |
Geometric formulation of quantum stress fields CL Rogers, AM Rappe Physical Review B 65 (22), 224117, 2002 | 66 | 2002 |
Higher symplectic geometry CL Rogers Arxiv preprint arXiv:1106.4068, 2011 | 63 | 2011 |
Homotopy moment maps M Callies, Y Fregier, CL Rogers, M Zambon Advances in Mathematics 303, 954-1043, 2016 | 62* | 2016 |
L∞-algebras of local observables from higher prequantum bundles D Fiorenza, CL Rogers, U Schreiber Homology, Homotopy and Applications 16 (2), 107-142, 2014 | 58 | 2014 |
2-plectic geometry, Courant algebroids, and categorified prequantization CL Rogers Journal of Symplectic Geometry 11 (1), 53-91, 2013 | 53* | 2013 |
A higher Chern–Weil derivation of AKSZ σ-models D Fiorenza, CL Rogers, U Schreiber International Journal of Geometric Methods in Modern Physics 10 (01), 1250078, 2013 | 46 | 2013 |
Notes on algebraic operads, graph complexes, and Willwacher’s construction VA Dolgushev, CL Rogers Mathematical aspects of quantization 583, 25-145, 2012 | 43* | 2012 |
What do homotopy algebras form? VA Dolgushev, AE Hoffnung, CL Rogers Advances in Mathematics 274, 562-605, 2015 | 42 | 2015 |
Higher -gerbe connections in geometric prequantization D Fiorenza, CL Rogers, U Schreiber Reviews in Mathematical Physics 28 (06), 1650012, 2016 | 33 | 2016 |
Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields VA Dolgushev, CL Rogers, TH Willwacher Annals of Mathematics 182 (3), 855-943, 2015 | 31 | 2015 |
On an enhancement of the category of shifted L∞-algebras VA Dolgushev, CL Rogers Applied Categorical Structures, 1-15, 2016 | 26 | 2016 |
An explicit model for the homotopy theory of finite-type Lie n–algebras C Rogers Algebraic & Geometric Topology 20 (3), 1371-1429, 2020 | 16 | 2020 |
On the homotopy theory for Lie∞–groupoids, with an application to integrating L∞–algebras C Rogers, C Zhu Algebraic & Geometric Topology 20 (3), 1127-1219, 2020 | 9 | 2020 |
Which homotopy algebras come from transfer? M Markl, C Rogers Proceedings of the American Mathematical Society 150 (3), 975-990, 2022 | 6 | 2022 |
Homotopical properties of the simplicial Maurer–Cartan functor CL Rogers 2016 MATRIX Annals, 3-15, 2018 | 6 | 2018 |
The cohomology of the full directed graph complex VA Dolgushev, CL Rogers Algebras and Representation Theory 23 (3), 917-961, 2020 | 3 | 2020 |