Modeling task fMRI data via deep convolutional autoencoder H Huang, X Hu, Y Zhao, M Makkie, Q Dong, S Zhao, L Guo, T Liu IEEE transactions on medical imaging 37 (7), 1551-1561, 2017 | 195 | 2017 |
Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks Y Zhao, Q Dong, S Zhang, W Zhang, H Chen, X Jiang, L Guo, X Hu, J Han, ... IEEE Transactions on Biomedical Engineering 65 (9), 1975-1984, 2017 | 95 | 2017 |
Recognizing brain states using deep sparse recurrent neural network H Wang, S Zhao, Q Dong, Y Cui, Y Chen, J Han, L Xie, T Liu IEEE transactions on medical imaging 38 (4), 1058-1068, 2018 | 62 | 2018 |
Modeling hierarchical brain networks via volumetric sparse deep belief network Q Dong, F Ge, Q Ning, Y Zhao, J Lv, H Huang, J Yuan, X Jiang, D Shen, ... IEEE transactions on biomedical engineering 67 (6), 1739-1748, 2019 | 40 | 2019 |
Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders Q Li, Q Dong, F Ge, N Qiang, Y Zhao, H Wang, H Huang, X Wu, T Liu Information Processing in Medical Imaging: 26th International Conference …, 2019 | 40 | 2019 |
Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder Y Zhao, Q Dong, H Chen, A Iraji, Y Li, M Makkie, Z Kou, T Liu Medical image analysis 42, 200-211, 2017 | 37 | 2017 |
Modeling task-based fMRI data via deep belief network with neural architecture search N Qiang, Q Dong, W Zhang, B Ge, F Ge, H Liang, Y Sun, J Gao, T Liu Computerized Medical Imaging and Graphics 83, 101747, 2020 | 32 | 2020 |
Identify hierarchical structures from task-based fMRI data via hybrid spatiotemporal neural architecture search net W Zhang, L Zhao, Q Li, S Zhao, Q Dong, X Jiang, T Zhang, T Liu Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd …, 2019 | 31 | 2019 |
Deep variational autoencoder for mapping functional brain networks N Qiang, Q Dong, F Ge, H Liang, B Ge, S Zhang, Y Sun, J Gao, T Liu IEEE Transactions on Cognitive and Developmental Systems 13 (4), 841-852, 2020 | 29 | 2020 |
Hierarchical organization of functional brain networks revealed by hybrid spatiotemporal deep learning W Zhang, S Zhao, X Hu, Q Dong, H Huang, S Zhang, Y Zhao, H Dai, F Ge, ... Brain connectivity 10 (2), 72-82, 2020 | 28 | 2020 |
Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs J Yuan, X Li, J Zhang, L Luo, Q Dong, J Lv, Y Zhao, X Jiang, S Zhang, ... Neuroimage 180, 350-369, 2018 | 26 | 2018 |
A novel ADHD classification method based on resting state temporal templates (RSTT) using spatiotemporal attention auto-encoder N Qiang, Q Dong, H Liang, B Ge, S Zhang, C Zhang, J Gao, Y Sun Neural Computing and Applications 34 (10), 7815-7833, 2022 | 20 | 2022 |
Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder N Qiang, Q Dong, H Liang, B Ge, S Zhang, Y Sun, C Zhang, W Zhang, ... Journal of neural engineering 18 (4), 0460b6, 2021 | 20 | 2021 |
Spatiotemporal attention autoencoder (STAAE) for ADHD classification Q Dong, N Qiang, J Lv, X Li, T Liu, Q Li Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd …, 2020 | 20 | 2020 |
Discovering hierarchical common brain networks via multimodal deep belief network S Zhang, Q Dong, W Zhang, H Huang, D Zhu, T Liu Medical image analysis 54, 238-252, 2019 | 20 | 2019 |
What makes a good movie trailer? Interpretation from simultaneous EEG and eyetracker recording S Liu, J Lv, Y Hou, T Shoemaker, Q Dong, K Li, T Liu Proceedings of the 24th ACM international conference on Multimedia, 82-86, 2016 | 18 | 2016 |
deep variational autoencoder for modeling functional brain networks and ADHD identification N Qiang, Q Dong, Y Sun, B Ge, T Liu 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 554-557, 2020 | 15 | 2020 |
Training a camera to perform long-distance eye tracking by another eye-tracker W Li, Q Dong, H Jia, S Zhao, Y Wang, L Xie, Q Pan, F Duan, T Liu IEEE Access 7, 155313-155324, 2019 | 15 | 2019 |
3-d functional brain network classification using convolutional neural networks D Ren, Y Zhao, H Chen, Q Dong, J Lv, T Liu 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017 …, 2017 | 15 | 2017 |
Neural architecture search for optimizing deep belief network models of fMRI data N Qiang, B Ge, Q Dong, F Ge, T Liu Multiscale Multimodal Medical Imaging: First International Workshop, MMMI …, 2020 | 14 | 2020 |