Machine learning prediction of nine molecular properties based on the SMILES representation of the QM9 quantum-chemistry dataset GA Pinheiro, J Mucelini, MD Soares, RC Prati, JLF Da Silva, MG Quiles The Journal of Physical Chemistry A 124 (47), 9854-9866, 2020 | 95 | 2020 |
Methane dehydrogenation on 3d 13-atom transition-metal clusters: A density functional theory investigation combined with Spearman rank correlation analysis KF Andriani, J Mucelini, JLF Da Silva Fuel 275, 117790, 2020 | 27 | 2020 |
Ab Initio Insights into the Formation Mechanisms of 55-Atom Pt-Based Core–Shell Nanoalloys PCD Mendes, SG Justo, J Mucelini, MD Soares, KEA Batista, MG Quiles, ... The Journal of Physical Chemistry C 124 (1), 1158-1164, 2019 | 27 | 2019 |
Ab initio investigation of the formation of ZrO2-like structures upon the adsorption of Zrn on the CeO2 (111) surface J Mucelini, R Costa-Amaral, Y Seminovski, JLF Da Silva The Journal of Chemical Physics 149 (24), 2018 | 13 | 2018 |
Ab initio insights into the structural, energetic, electronic, and stability properties of mixed Ce n Zr 15− n O 30 nanoclusters P Felício-Sousa, J Mucelini, L Zibordi-Besse, KF Andriani, Y Seminovski, ... Physical Chemistry Chemical Physics 21 (48), 26637-26646, 2019 | 11 | 2019 |
Understanding the interplay between π–π and cation–π interactions in [janusene–Ag]+ host–guest systems: a computational approach J Mucelini, I Østrøm, AO Ortolan, KF Andriani, GF Caramori, RLT Parreira, ... Dalton Transactions 48 (35), 13281-13292, 2019 | 8 | 2019 |
Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters J Mucelini, MG Quiles, RC Prati, JLF Da Silva Journal of Chemical Information and Modeling 61 (3), 1125-1135, 2021 | 4 | 2021 |
From Bulk CeO2 to Transition-Metal Clusters Supported on the CeO2(111) Surface: A Critical Discussion RC Amaral, J Mucelini, Y Seminovski, JLF Da Silva Encyclopedia of Interfacial Chemistry, 452--459, 2018 | 1 | 2018 |
Investigação das propriedades estruturais, energéticas e ópticas das perovskitas abx3 utilizando a teoria do funcional da densidade MC Gallego, J Mucelini, S Malladi, JLF Silva Resumos, 2020 | | 2020 |
Estudo ab initio do papel dos átomos nas propriedades eletrônicas e estruturais das perovskitas MC Gallego, J Mucelini, S Malladi, JLF Silva Resumos, 2019 | | 2019 |
Methane Dehydrogenation on 3d 13-Atoms Transition-metal Clusters–A DFT Investigation KF Andriani, J Mucelini, JLF Da Silva zeolites (Cu-MOR, Cu-ZSM-5) 24, 25, 2019 | | 2019 |
Estudo ab initio da adsorção de átomos de zircônio sobre superfícies de óxido de cério: Zrn/CeO2(111) J Mucelini São Carlos Institute of Chemistry, 2018 | | 2018 |
From bulk Ce O2 to transition-metal clusters supported on the CeO2 (111) surface RC Amaral, J Mucelini, Y Seminovski, JLF Silva Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 2017 | | 2017 |
A coordenaçãao dos janusenos: uma abordagem teórica do efeito dos ligantes J Mucelini Florianópolis, SC, 2016 | | 2016 |
Combined Ab initio Calculation Plus Machine Learning Framework Applied to Perovskites Properties and Structural Study MC Gallego, J Mucelini, JLF Da Silva Center for Innovation on New Energies, 33, 0 | | |
Experimental Analysis of the Importance of the Descriptors to Reduce the Training and Validation Error GAL Pinheiro, MD Soares, J Mucelini, JLF Da Center for Innovation on New Energies, 60, 0 | | |
Data Mining and Statistical Tools based Framework to Investigate Quantum Chemistry Data J Mucelini, MG Quiles, RC Prati, JLF Da Silva Center for Innovation on New Energies, 62, 0 | | |
Methane Dehydrogenation on 13-Atom Transition-Metal (Fe, Co, Ni, Cu) via Density Functional Theory KF Andriani, J Mucelini, JLF Da Silva Center for Innovation on New Energies, 7, 0 | | |
Correlating Stability and the Properties of 55-Atom Bimetallic Pt-based Nanoalloys to Understand the Formation of Core-Shell Systems through Density Functional Theory PCD Mendes, SG Justo, J Mucelini, MD Soares, KEA Batista, MG Quiles, ... Center for Innovation on New Energies, 10, 0 | | |
Combination of Molecular Representations and Machine Learning Algorithms for a Set of Molecular Systems with the Same Number of Atoms MD Soares, GA Pinheiro, J Mucelini, JLF Da Silva, MG Quiles Center for Innovation on New Energies, 65, 0 | | |