GANs trained by a two time-scale update rule converge to a local Nash equilibrium M Heusel, H Ramsauer, T Unterthiner, B Nessler, S Hochreiter Advances in Neural Information Processing Systems, 6626-6637, 2017 | 12257 | 2017 |
FABIA: factor analysis for bicluster acquisition S Hochreiter, U Bodenhofer, M Heusel, A Mayr, A Mitterecker, A Kasim, ... Bioinformatics 26 (12), 1520-1527, 2010 | 387 | 2010 |
Speeding up semantic segmentation for autonomous driving M Treml, J Arjona-Medina, T Unterthiner, R Durgesh, F Friedmann, ... | 332 | 2016 |
Fast model-based protein homology detection without alignment S Hochreiter, M Heusel, K Obermayer Bioinformatics 23 (14), 1728-1736, 2007 | 185 | 2007 |
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project B Verbist, G Klambauer, L Vervoort, W Talloen, Z Shkedy, O Thas, ... Drug discovery today 20 (5), 505-513, 2015 | 107 | 2015 |
Coulomb GANs: Provably optimal Nash equilibria via potential fields T Unterthiner, B Nessler, C Seward, G Klambauer, M Heusel, ... arXiv preprint arXiv:1708.08819, 2017 | 82 | 2017 |
Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv 2017 M Heusel, H Ramsauer, T Unterthiner, B Nessler, S Hochreiter arXiv preprint arXiv:1706.08500, 0 | 59 | |
ELU-networks: Fast and accurate CNN learning on imagenet M Heusel, DA Clevert, G Klambauer, A Mayr, K Schwarzbauer, ... NiN 8, 35-68, 2015 | 28 | 2015 |
Exploiting the Japanese toxicogenomics project for predictive modelling of drug toxicity DA Clevert, M Heusel, A Mitterecker, W Talloen, HWH Göhlmann, ... CAMDA 2012, 26-9, 2012 | 8 | 2012 |
Generative adversarial networks M Heusel, H Ramsauer, T Unterthiner, B Nessler, S Hochreiter Curran Associates, Inc 30, 6626-6637, 2017 | 3 | 2017 |
Remote Homology detection with LSTM M Heusel | | 2007 |
FABIA: Factor Analysis for Bicluster Acquisition—supplementary material— S Hochreiter, U Bodenhofer, M Heusel, A Mayr, A Mitterecker, A Kasim, ... | | |