关注
Simon Letzgus
Simon Letzgus
Machine Leraning Group, TU Berlin
在 tu-berlin.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
An artificial neural network‐based condition monitoring method for wind turbines, with application to the monitoring of the gearbox
P Bangalore, S Letzgus, D Karlsson, M Patriksson
Wind Energy 20 (8), 1421-1438, 2017
1412017
Toward explainable artificial intelligence for regression models: A methodological perspective
S Letzgus, P Wagner, J Lederer, W Samek, KR Müller, G Montavon
IEEE Signal Processing Magazine 39 (4), 40-58, 2022
882022
A sequential pressure-based algorithm for data-driven leakage identification and model-based localization in water distribution networks
I Daniel, J Pesantez, S Letzgus, MA Khaksar Fasaee, F Alghamdi, ...
Journal of Water Resources Planning and Management 148 (6), 04022025, 2022
31*2022
Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models
S Letzgus
Wind Energy Science Discussions 2020, 1-29, 2020
192020
A GIS-Based planning approach for urban power and natural gas distribution grids with different heat pump scenarios
JM Kisse, M Braun, S Letzgus, TM Kneiske
Energies 13 (16), 4052, 2020
142020
Marktdesign, Regulierung und Gesamteffizienz von Flexibilität im Stromsystem–Bestandsaufnahme und Herausforderungen
H Kondziella, S Graupner, T Bruckner, H Doderer, S Schäfer-Stradowsky, ...
Accessed: Dec 11, 2020, 2019
92019
Enabling co-innovation for a successful digital transformation in wind energy using a new digital ecosystem and a fault detection case study
S Barber, LAM Lima, Y Sakagami, J Quick, E Latiffianti, Y Liu, R Ferrari, ...
Energies 15 (15), 5638, 2022
52022
A high-resolution pressure-driven method for leakage identification and localization in water distribution networks. Zenodo
I Daniel, J Pesantez, S Letzgus, MA Khaksar Fasaee, F Alghamdi, ...
52020
SCADA-data analysis for condition monitoring of wind turbines
S Letzgus
52015
Marktdesign, Regulierung und Gesamteffizienz von Flexibilität im Stromsystem–Bestandsaufnahme und Herausforderungen [WindNODEArbeitspaket 5 „Marktdesign und Regulierung–neue …
H Kondziella, S Graupner, T Bruckner, H Doderer, S Schäfer-Stradowsky, ...
42019
An explainable AI framework for robust and transparent data-driven wind turbine power curve models
S Letzgus, KR Müller
Energy and AI 15, 100328, 2024
32024
Frequency Stabilizer in Transmission Systems
E Spahic, S Letzgus, G Beck, G Kuhn, V Hild
CIGRE-IEC 2016 Colloquium on EHV and UHV (AC and DC), Montreal, Canada 1, 2.2, 2016
32016
Towards transparent ANN wind turbine power curve models.
S Letzgus
arXiv preprint arXiv:2210.12104, 2022
12022
Enabling Co-Innovation for A Successful Digital Transformation in Wind Energy Using the WeDoWind Ecosystem and A Fault Detection Case Study
S Barber, L Lima, Y Sakagami, J Quick, E Latiffianti, Y Liu, R Ferrari, ...
Preprints, 2022
12022
XpertAI: uncovering model strategies for sub-manifolds
S Letzgus, KR Müller, G Montavon
arXiv preprint arXiv:2403.07486, 2024
2024
Predictive Control of a Domestic Appliance
S Braune, Thomas and Schliecker, Gudrun and Letzgus
WO Patent EP2,023,063,252 W, 2023
2023
XAI for transparent wind turbine power curve models
S Letzgus
arXiv preprint arXiv:2210.12104, 2022
2022
Method for Determining Foam During the Treatment of Laundry Articles and Washing Machine for Carrying Out the Method
S Letzgus, E Opitz, A Rischke, G Schliecker, P Schrader
EP Patent EP3988697A1, 2022
2022
Integrated Intelligence Assessment For Energy Systems
S Letzgus, C Koch, G Erdmann
Transforming Energy Markets, 41st IAEE International Conference, Jun 10-13, 2018, 2018
2018
Analysis of SCADA data for early fault detection with application to the asset management of wind turbines
P BANGALORE, S LETZGUS, M PATRIKSSON, LB TJERNBERG
CIGRE Paris, 2016
2016
系统目前无法执行此操作,请稍后再试。
文章 1–20