Weak ill-posedness of spatial discretizations of absorbing boundary conditions for Schrödinger-type equations IÍ Alonso-Mallo, N Reguera SIAM Journal on Numerical Analysis 40 (1), 134-158, 2002 | 49 | 2002 |
Discrete absorbing boundary conditions for Schrödinger-type equations. construction and error analysis I Alonso-Mallo, N Reguera SIAM Journal on numerical Analysis 41 (5), 1824-1850, 2003 | 35 | 2003 |
Avoiding order reduction when integrating reaction–diffusion boundary value problems with exponential splitting methods I Alonso-Mallo, B Cano, N Reguera Journal of Computational and Applied Mathematics 357, 228-250, 2019 | 26 | 2019 |
Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods I Alonso-Mallo, B Cano, N Reguera IMA Journal of Numerical Analysis 37 (4), 2091-2119, 2017 | 22 | 2017 |
Analysis of order reduction when integrating linear initial boundary value problems with Lawson methods I Alonso-Mallo, B Cano, N Reguera Applied Numerical Mathematics 118, 64-74, 2017 | 21 | 2017 |
Discrete absorbing boundary conditions for Schrödinger-type equations. Practical implementation I Alonso-Mallo, N Reguera Mathematics of computation 73 (245), 127-142, 2004 | 21 | 2004 |
Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods I Alonso-Mallo, B Cano, N Reguera IMA Journal of Numerical Analysis 38 (3), 1294-1323, 2018 | 19 | 2018 |
Avoiding order reduction when integrating nonlinear Schrödinger equation with Strang method B Cano, N Reguera Journal of Computational and Applied Mathematics 316, 86-99, 2017 | 14 | 2017 |
A high order finite element discretization with local absorbing boundary conditions of the linear Schrödinger equation I Alonso-Mallo, N Reguera Journal of Computational Physics 220 (1), 409-421, 2006 | 14 | 2006 |
How to avoid order reduction when Lawson methods integrate nonlinear initial boundary value problems B Cano, N Reguera BIT Numerical Mathematics 62 (2), 431-463, 2022 | 10 | 2022 |
Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods I Alonso, BC Mallo, N Reguera submitted for publication, 2017 | 10 | 2017 |
Numerical detection and generation of solitary waves for a nonlinear wave equation I Alonso-Mallo, N Reguera Wave Motion 56, 137-146, 2015 | 9 | 2015 |
Comparison of efficiency among different techniques to avoid order reduction with Strang splitting I Alonso‐Mallo, B Cano, N Reguera Numerical Methods for Partial Differential Equations 37 (1), 854-873, 2021 | 8 | 2021 |
Simulation of coherent structures in nonlinear Schrödinger-type equations I Alonso-Mallo, A Durán, N Reguera Journal of Computational Physics 229 (21), 8180-8198, 2010 | 8 | 2010 |
An efficient discrete model to approximate the solutions of a nonlinear double-fractional two-component gross–Pitaevskii-Type System JE Macías-Díaz, N Reguera, AJ Serna-Reyes Mathematics 9 (21), 2727, 2021 | 4 | 2021 |
Why improving the accuracy of exponential integrators can decrease their computational cost? B Cano, N Reguera Mathematics 9 (9), 1008, 2021 | 4 | 2021 |
Stability of a class of matrices with applications to absorbing boundary conditions for Schrödinger-type equations N Reguera Applied mathematics letters 17 (2), 209-215, 2004 | 4 | 2004 |
Analysis of a third-order absorbing boundary condition for the Schrödinger equation discretized in space N Reguera Applied mathematics letters 17 (2), 181-188, 2004 | 4 | 2004 |
Adaptive absorbing boundary conditions for Schrödinger-type equations I Alonso-Mallo, N Reguera Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 …, 2003 | 4 | 2003 |
A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate AJ Serna-Reyes, JE Macías-Díaz, N Reguera Mathematics 9 (12), 1412, 2021 | 3 | 2021 |