关注
Chi-tathon Kupwiwat
Chi-tathon Kupwiwat
Faculty of Architecture, Chulalongkorn University
在 chula.ac.th 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep deterministic policy gradient and graph convolutional network for bracing direction optimization of grid shells
C Kupwiwat, K Hayashi, M Ohsaki
Frontiers in Built Environment 8, 899072, 2022
82022
Multi-objective optimization of truss structure using multi-agent reinforcement learning and graph representation
C Kupwiwat, K Hayashi, M Ohsaki
Engineering Applications of Artificial Intelligence 129, 107594, 2024
62024
Deep deterministic policy gradient and graph attention network for geometry optimization of latticed shells
C Kupwiwat, K Hayashi, M Ohsaki
Applied Intelligence 53 (17), 19809-19826, 2023
62023
Deep deterministic policy gradient and graph convolutional networks for topology optimization of braced steel frames
C KUPWIWAT, Y IWAGOE, K HAYASHI, M OHSAKI
構造工学論文集 B 69, 129-139, 2023
42023
Fundamental study on morphogenesis of shell structure using reinforcement learning
C Kupwiwat, 山本憲司
構造工学論文集 67 (B), 211-218, 2021
4*2021
Sizing optimization of free-form lattice shells using deep deterministic policy gradient and graph convolutional networks
C Kupwiwat, K Hayashi, M Ohsaki
Proceedings of IASS Annual Symposia 2023 (9), 1-11, 2023
12023
Hierarchical graph-based machine learning model for optimization of three-dimensional braced steel frame
CHIT KUPWIWAT, K Hayashi, M Ohsaki
Available at SSRN 4815849, 2024
2024
Deep Deterministic Policy Gradient and Graph Convolutional Network for Geometry and Topology Optimization of Braced Latticed Shells
C Kupwiwat, K Hayashi, M Ohsaki
日本建築学会近畿支部研究報告集. 構造系 62 (69-72), 2022
2022
強化学習を用いたシェル構造の形態創生に関する基礎的研究 その2:強化学習アルゴリズムの検討
C Kupwiwat, 山本憲司
日本建築学会, 755-756, 2021
2021
マルチエージェント強化学習を用いた構造形態創生に関する基礎的研究
C Kupwiwat, 山本憲司
コロキウム構造形態の解析と創生2020講演論文集, 65-70, 2020
2020
強化学習を用いたシェル構造の形態創生に関する基礎的研究
C Kupwiwat, 山本憲司
日本建築学会, 933-934, 2020
2020
Pre-Trained Machine Learning for Inverse Structural Design of Piecewise Developable Surface
CHIT KUPWIWAT, M Ohsaki
Available at SSRN 5027841, 0
系统目前无法执行此操作,请稍后再试。
文章 1–12